Enthalpy is energy of bonds broken - energy of bonds formed. Here, the NH3 and O2 are broken and H2O and NO are formed. So the energy to break the NH3 bonds is 3 times the amount of energy it takes to break a N-H single bond (because there are three of them in a NH3 molecule) and then multiplied by 4 because there are four particles.
So the energy of the bonds broken is 12x the energy to break a N-H single bond plus 5x the amount of energy to break an O—O double bond (you don’t multiply this by anything because in each O2 molecule there is only one bond).
The energy of the bonds formed is 6*2 = 12 Times the amount of energy for a O-H single bond plus 4 times the amount of energy required to break a N—O double bond.
Subtract energy of bonds broken - energy of bonds formed and this is the change in enthalpy.
To know what type of bond it is, draw the Lewis structure.
“Hydrogen bonding is important in many chemical processes. Hydrogen bonding is responsible for water's unique solvent capabilities. Hydrogen bonds hold complementary strands of DNA together, and they are responsible for determining the three-dimensional structure of folded proteins including enzymes and antibodies.”
Answer:

Explanation:
Hello.
In this case, since the normal boiling point of X is 117.80 °C, the boiling point elevation constant is 1.48 °C*kg*mol⁻¹, the mass of X is 100 g and the boiling point of the mixture of X and KBr boils at 119.3 °C, we can use the following formula:

Whereas the Van't Hoff factor of KBr is 2 as it dissociates into potassium cations and bromide ions; it means that we can compute the molality of the solution:

Next, given the mass of solventin kg (0.1 kg from 100 g), we compute the moles KBr:

Finally, considering the molar mass of KBr (119 g/mol) we compute the mass that was dissolved:

Best regards.