_Mg + _HCL = _MgCl2 + H2
Separate the terms on each side:
_Mg + _HCl = _MgCl2 + H2
Mg- 1 Mg-1
H-1 H-2
Cl-1 Cl-2
Mg is balanced on both sides so move on to the next (put a 1 in the space).
1Mg
There are two H's and two Cl's on the results side, so to balance the equation put a 2 as a coefficient for HCl and it'll all balance out.
2HCl
Balamced equation will be:
1Mg + 2HCL = 1MgCl2 + H2
Answer:
The age of the sample is 4224 years.
Explanation:
Let the age of the sample be t years old.
Initial mass percentage of carbon-14 in an artifact = 100%
Initial mass of carbon-14 in an artifact = ![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
Final mass percentage of carbon-14 in an artifact t years = 60%
Final mass of carbon-14 in an artifact = ![[A]=0.06[A_o]](https://tex.z-dn.net/?f=%5BA%5D%3D0.06%5BA_o%5D)
Half life of the carbon-14 = 

![[A]=[A_o]\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-kt%7D)
![[A]=[A_o]\times e^{-\frac{0.693}{t_{1/2}}\times t}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-%5Cfrac%7B0.693%7D%7Bt_%7B1%2F2%7D%7D%5Ctimes%20t%7D)
![0.60[A_o]=[A_o]\times e^{-\frac{0.693}{5730 year}\times t}](https://tex.z-dn.net/?f=0.60%5BA_o%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-%5Cfrac%7B0.693%7D%7B5730%20year%7D%5Ctimes%20t%7D)
Solving for t:
t = 4223.71 years ≈ 4224 years
The age of the sample is 4224 years.
Answer:
milk of magnesia, pH = 10.5
Explanation:
Answer:
a) 1.866 × 10 ⁻¹⁹ J b) 3.685 × 10⁻¹⁹ J
Explanation:
the constants involved are
h ( Planck constant) = 6.626 × 10⁻³⁴ m² kg/s
Me of electron = 9.109 × 10 ⁻³¹ kg
speed of light = 3.0 × 10 ⁸ m/s
a) the Ek ( kinetic energy of the dislodged electron) = 0.5 mu²
Ek = 0.5 × 9.109 × 10⁻³¹ × ( 6.40 × 10⁵ )² = 1.866 × 10 ⁻¹⁹ J
b) Φ ( minimum energy needed to dislodge the electron ) can be calculated by this formula
hv = Φ + Ek
where Ek = 1.866 × 10 ⁻¹⁹ J
v ( threshold frequency ) = c / λ where c is the speed of light and λ is the wavelength of light = 358.1 nm = 3.581 × 10⁻⁷ m
v = ( 3.0 × 10 ⁸ m/s ) / (3.581 × 10⁻⁷ m ) = 8.378 × 10¹⁴ s⁻¹
hv = 6.626 × 10⁻³⁴ m² kg/s × 8.378 × 10¹⁴ s⁻¹ = 5.551 × 10⁻¹⁹ J
5.551 × 10⁻¹⁹ J = 1.866 × 10 ⁻¹⁹ J + Φ
Φ = 5.551 × 10⁻¹⁹ J - 1.866 × 10 ⁻¹⁹ J = 3.685 × 10⁻¹⁹ J
Explanation:
1. Electrons surround the nucleus in defined regions called orbits.
2. The shells further away from the nucleus are larger and can hold more electrons.
3. The shells closer to the nucleus are smaller and can hold less electrons.
4. The closest shell (closest to the nucleus) can hold a maximum of two electrons.
5. Once the first shell is full, the second shell begins to fill. It can hold a maximum of eight electrons.
6. Once the second shell is full, the third shell begins to fill.
7. Once the third shell contains Eighteen electrons, the fourth shell begins to fill.
8. The arrangement of electrons in shells around the nucleus is referred to as an atom's electronic configuration.