Answer:
0.007 mol
Explanation:
We can solve this problem using the ideal gas law:
PV = nRT
where P is the total pressure, V is the volume, R the gas constant, T is the temperature and n is the number of moles we are seeking.
Keep in mind that when we collect a gas over water we have to correct for the vapor pressure of water at the temperature in the experiment.
Ptotal = PH₂O + PO₂ ⇒ PO₂ = Ptotal - PH₂O
Since R constant has unit of Latm/Kmol we have to convert to the proper unit the volume and temperature.
P H₂O = 23.8 mmHg x 1 atm/760 mmHg = 0.031 atm
V = 1750 mL x 1 L/ 1000 mL = 0.175 L
T = (25 + 273) K = 298 K
PO₂ = 1 atm - 0.031 atm = 0.969 atm
n = PV/RT = 0.969 atm x 0.1750 L / (0.08205 Latm/Kmol x 298 K)
n = 0.007 mol
Answer:
Nov 28, 2019 - These templates were designed to help get you started. ... of each opportunity is clear to see, because the ones you send match not only my interests but my abilities. What you do is really motivating and keeps me uplifted in my job ... to thank you for all the support you've shown me throughout my career, ...
Explanation:
The term that describes when a solvent is holding as much solute in solution as it is able for a given temperature is called supersaturated solution. A little disturbance to this solution some of the solute will crystallize or precipitate out since this solution is not stable.