G
has the SI units
m
3
k
g
⋅
s
2
Answer:
non linear square relationship
Explanation:
formula for centripetal force is given as
a = mv^2/r
here a ic centripetal acceleration , m is mass of body moving in circle of radius r and v is velocity of body . If m ,and r are constant we have
a = constant × v^2
a α v^2
hence non linear square relationship
The horizontal and vertical components of a projectile's velocity are independent of each other.
Answer: Option C
<u>Explanation:</u>
The path of a projectile is determined by two components of motion. They are termed as horizontal and the vertical components. Since both components velocity are perpendicular to each other, so it can stated that they are independent of each other.
Even it can seen that when the horizontal components of velocity is constant, then there will be change in the vertical components of velocity leading to free fall projectile path.
And in the absence of gravity, there will be change in the horizontal components of velocity with zero vertical component of velocity. Thus, the horizontal and the vertical components of a projectile’s velocity are seemed to be independent of each other.
Answer:
Explanation:
For resistance of a wire , the formula is as follows .
R = ρ L/S
where ρ is specific resistance , L is length and S is cross sectional area of wire .
for first wire resistance
R₁ = ρ 3L/3a = ρ L/a
for second wire , resistance
R₂ = ρ 3L/6a
= .5 ρ L/a
For 3 rd wire resistance
R₃ = ρ 6L/3a
= 2ρ L/a
For fourth wire , resistance
R₄ = ρ 6L/6a
= ρ L/a
So the smallest resistance is of second wire .
Its resistance is .5 ρ L/a
I understand that sound travels faster in water then in air. Water is a liquid, and air is gas.
Water still has the ability to roll the molecules over each other (so water can flow), it has some flexibility.
But I do not understand how a solid that is inflexible can make sound waves travel faster then in a flexible liquid.
In fact, sound waves travel over 17 times faster through steel than through air.
Sound waves travel over four times faster in water than it would in air.