According to the reversible reaction equation:
2Hi(g) ↔ H2(g) + i2(g)
and when Keq is the concentration of the products / the concentration of the reactants.
Keq = [H2][i2]/[Hi]^2
when we have Keq = 1.67 x 10^-2
[H2] = 2.44 x 10^-3
[i2] = 7.18 x 10^-5
so, by substitution:
1.67 x 10^-2 = (2.44 x 10^-3)*(7.18x10^-5)/[Hi]^2
∴[Hi] = 0.0033 M
1 is D - double-replacements do not make solid metals
2 is A - to have complete combustion the original compound must ONLY have C, H and O
3 is B - the elemental Mg replaces the H in the HCl
Answer:
True
Explanation:
The entropy of a system denoted by S is a thermodynamic function that increases in value when there are more ways to arrange the particles in the system. Some spontaneous chemical processes are entropy driven. An increase in entropy is said to drive the dissolution of ionic salts along with the evaporation of water are related to the spreading out of energy.
The entropy of a system can be taken as a measure of disorder of a system. In a spontaneous chemical process, the entropy of the universe is said to increase. ΔSunivu>0. Making the answer true.