1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
2 years ago
9

3 examples of newtrons 2 law

Physics
1 answer:
frozen [14]2 years ago
7 0

Explanation:

1) Kicking a ball.

2) Capture the ball by hand.

3) Push a car.

You might be interested in
A photon of wavelength 7.33 pm scatters at an angle of 157° from an initially stationary, unbound electron. What is the de Brogl
Ann [662]

Answer:

4.63 p.m.

Explanation:

The problem given here can be solved by the Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda  is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta  is the angle of scattering.

Given that, the scattering angle is, \theta=157^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8}  } (1-cos157^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos157^\circ ) m\\\lambda^{'}-\lambda=2.42(1-cos157^\circ ) p.m.

Therfore,

\lambda^{'}-\lambda=4.64 p.m.

Here, the photon's incident wavelength is \lamda=7.33pm

So,

\lambda^{'}=7.33+4.64=11.97 p.m

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

here, \vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therfore,

\lambda_{e}=\frac{7.33\times 11.97}{\sqrt{7.33^{2}+11.97^{2}-2\times 7.33\times 11.97\times cos157^\circ }} p.m.\\\lambda_{e}=\frac{87.7401}{18.935} = 4.63 p.m.

This is the de Broglie wavelength of the electron after scattering.

8 0
3 years ago
Take schlatts love uwu (i cant spell)
7nadin3 [17]

thank you so much for the schlatt

8 0
2 years ago
2. A ball is dropped from rest. The acceleration due to gravity is 10m/s? and the time it
d1i1m1o1n [39]

Answer:

STEP BY STEP

V = S/T

V= 10/5

V = 2 m/s

3 0
3 years ago
A shot is fired at an angle of 60 degree horizontal with Kinetic energy E. If air resistance is ignored, the K.E at the top of t
Lapatulllka [165]
I'm not sure what "60 degree horizontal" means.

I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith. 

Now, I'll answer the question that I have invented.

When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is    S cos(60)  =  0.5 S ,
and the vertical component is   S sin(60) = S√3/2  =  0.866 S .  (rounded)

-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.

-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change. 

-- So at the top of its trajectory, its KE is 0.25 of what it had originally. 

That's  E/4 .
3 0
2 years ago
If two charged objects in a laboratory are brought to a distance of 0.22 meters away from each other. What is
zysi [14]

Answer:

q_2=2.47\times 10^{-4}\ C

Explanation:

The charge on one object, q_1=9.9\times 10^{-5}\ C

The distance between the charges, r = 0.22 m

The force between the charges, F = 4,550 N

Let q₂ is the charge on the other sphere. The electrostatic force between two charges is given by the formula as follows :

F=\dfrac{kq_1q_2}{r^2}\\\\q_2=\dfrac{Fr^2}{kq_1}\\\\q_2=\dfrac{4550\times (0.22) ^2}{9\times 10^9\times 9.9\times 10^{-5}}\\\\q_2=2.47\times 10^{-4}\ C

So, the charge on the other sphere is 2.47\times 10^{-4}\ C.

7 0
2 years ago
Other questions:
  • The cretaceous-paleogene was a mass extinction event in which nearly every single large, land-dwelling dinosaur went extinct. WH
    10·2 answers
  • Two male moose charge at each other with the same speed and meet on a icy patch of tundra. As they collide, their antlers lock t
    15·2 answers
  • PLEASE HELP ASAP!! 25 POINTS!! how is Earth's surface likely to change along the edges of a bend in a river Channel?
    14·2 answers
  • Why is it important not to present a biased argument as a public speaker?
    5·1 answer
  • What causes differences in air temperatures at different altitudes?
    7·1 answer
  • Which are examples of projectile motion?
    11·2 answers
  • Which of Newton's laws explains why your hands get red when you press them hard against a wall? A. Newton's law of gravity B. Ne
    15·2 answers
  • A space vehicle approaches a space station in orbit. The intent of the engineers is to have the vehicle slowly approach, reducin
    15·1 answer
  • What components of the atom are found outside of the nucleus? protons electrons neutrons all are found in the nucleus
    11·2 answers
  • A supertrain with a proper length of 100 m travels at a speed of 0.950c as it passes through a tunnel having a proper length of
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!