Answer:
The mass of the reactants compared with the mass of the products should be the same if the reactants are in stoichiometric amounts.
Explanation:
In this question, they ask about chemical reactions and the comparison of the mass of reactants and products. Firstly, it is necessary to introduce the mass conservation principle.
Mass conservation principle mentions that in a chemical reaction, the total mass of reactants is equal to the total mass of products (if the reaction is fully developed). It means mass is not created or destroyed, only transforms from reactants to products.
For example, the mass of sodium plus the mass of chlorine that reactswith the sodium equals the mass of the product sodium chloride.Because atoms are only rearranged in a chemical reaction, there mustbe the same number of sodium atoms and chlorine atoms in both thereactants and products.
Finally, we can conclude that The mass of the reactants compared with the mass of the products should be the same if the reactants are in stoichiometric amounts.
It is b, i learned this last year hope this helps
Answer:
A bonding that occurs between high electronegative atoms such are N, F, O and H atoms, is called a hydrogen bond. Hydrogen bond is a very strong bond. (C)
If hydrogen bonds are not formed between H atoms and N, F, O atom, then the atoms interact through dispersion forces (also known as london dispersion forces). Dispersion forces are weak and they are temporary forces formed by overlapping of orbitals. (B)
Answer:
Wake up wake up wake up wake up
Explanation:
wake up wake up wake up wake up
Boiling point elevation is given as:
ΔTb=iKbm
Where,
ΔTb=elevation in the boiling point
that is given by expression:
ΔTb=Tb (solution) - Tb (pure solvent)
Here Tb (pure solvent)=118.1 °C
i for CaCO3= 2
Kb=2.93 °C/m
m=Molality of CaCO₃:
Molality of CaCO₃=Number of moles of CaCO₃/ Mass of solvent (Kg)
=(Given Mass of CaCO3/Molar mass of CaCO₃)/ Mass of solvent (Kg)
=(100.0÷100 g/mol)/0.4
= 2.5 m
So now putting value of m, i and Kb in the boiling point elevation equation we get:
ΔTb=iKbm
=2×2.93×2.5
=14.65 °C
boiling point of a solution can be calculated:
ΔTb=Tb (solution) - Tb (pure solvent)
14.65=Tb (solution)-118.1
Tb (solution)=118.1+14.65
=132.75