Answer:
a) f = 3.02x10¹⁵ s⁻¹, and λ = 99.4 nm.
b) 99.4 nm
Explanation:
a) The energy of radiation is given by:
E = h*f
Where h is the Planck constant (6.626x10⁻³⁴ J.s), and f is the frequency. To have the highest frequency, the energy must be the highest too, because they're directly proportional. So we must use E = -E1 = 20x10⁻¹⁹ J
20x10⁻¹⁹ = 6.626x10⁻³⁴xf
f = 3.02x10¹⁵ s⁻¹
The wavelenght is the velocity of light (3.00x10⁸ m/s) divided by the frequency:
λ = 3.00x10⁸/3.02x10¹⁵
λ = 9.94x10⁻⁸ m = 99.4 nm
b) To have the shortest wavelength, it must be the highest energy and frequency, so it would be the same as the letter a) 99.4 nm.
Answer:
A. 0.2395 w/w %
B. 2394ppm
Explanation:
A. To find concentrationin percent by mass of the solution we need to calculate mass of glycerol and mass of water. The formula is:
Mass glycerol / Total mass * 100
<em>Mass glycerol:</em>
The solution is 2.6x10⁻²moles / L. As there is 1L of solution there are 2.6x10⁻² moles of glycerol. In mass (Using molar mass glycerol: 92.09g/mol):
2.6x10⁻² moles of glycerol * (92.09g / mol) = 2.394g glycerol
<em>Mass of water:</em>
998.9mL and density = 0.9982g/mL:
998.9mL * (0.9982g/mL) = 997.1g of water.
That means percent by mass is:
% by mass: 2.394g / (997.1g + 2.394g) * 100 = 0.2395 w/w %
B. Parts per million are mg of glycerol per L of solution. As in 1L there are 2.394g. In mg:
2.394g * (1000mg / 1g) = 2394mg:
Parts per million: 2394mg / L = 2394ppm
Answer:
607 ppm
Explanation:
In this case we can start with the <u>ppm formula</u>:

If we have a solution of <u>0.0320 M</u>, we can say that in 1 L we have 0.032 mol of
, because the molarity formula is:

In other words:


If we use the <u>atomic mass</u> of
(19 g/mol) we can convert from mol to g:
Now we can <u>convert from g to mg</u> (1 g= 1000 mg), so:

Finally we can <u>divide by 1 L</u> to find the ppm:

<u>We will have a concentration of 607 ppm.</u>
I hope it helps!
Answer:
Temperate Deciduous Fores
Explanation: