Answer:
m = 180 g
Explanation:
Given data:
Energy absorbed = 108 J
Mas of gold = ?
Initial temperature = 25°C
Final temperature = 29.7 °C
Specific heat capacity of gold = 0.128 J/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT =29.7 °C - 25°C
ΔT = 4.7 °C
108 J = m ×0.128 J/g.°C ×4.7 °C
108 J = m ×0.60 J/g
m = 108 J/0.60 J/g
m = 180 g
Answer:
V = 34.55 L
Explanation:
Given that,
No of moles, n = 1.4
Temperature, T = 20°C = 20 + 273 = 293 K
Pressure, P = 0.974 atm
We need to find the volume of the gas. It can be calculated using Ideal gas equation which is :
PV=nRT
R is gas constant, 
Finding for V,

So, the volume of the gas is 34.55 L.
<span>P*V/T=constant
so P*V= constant*T
if T doesn't change then
P*V= constant
so 150kPa*0.8L=75kPa*xL
xL=150kPa*0.8L/75kPa=1.6L
hope it help</span>
Question 1 answer: A
Question 2 answer: H
Question 3 answer: J
Question 4 answer: T
First convert the 112 km/hr ratio into m/s (meters per second). To do this you multiply 112 km with 1000 m/km (since there's 1000 m in one km). You get 112000 m. Then multiply 1 hr with 60 min/hr (since there's 60 min in one hr. You get 60 min, but you want seconds, so multiply 60 min with 60 s/min to get 3600 s. There you go! Your answer is the speed of 112000m/3600s, but you can simplify that to 31.11m/s (since the answer should be in ? meters per 1 second.
Also, the "100-m-distance" part of the question is just to throw you off, because one particular speed obviously stays constant over any distance. Hope that helps :)