1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
2 years ago
13

The amount of heat an object can give off depends on _________.

Physics
2 answers:
jekas [21]2 years ago
8 0
The correct answer is It’s temperature and how big it is
FrozenT [24]2 years ago
6 0

Explanation:

it's temp and how big it is

You might be interested in
Premium
Luda [366]

Explanation:

the formula of speed is distance traveled by time it work

5 0
3 years ago
Read 2 more answers
How fast would you be going (in kmh) if you had a ship that accelerated at a constant 1g for 24 hours?
Nady [450]

Answer:

Explanation:

1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.

9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2

Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations.  We are going to use vf = vi + at.  Everything is just given, or we can assume, so I'll just solve.

vf = vi + at

vf = 0 + 127008 km/hour^2 * 24 hours

vf = 3,048,192 km/hour

If there's anything that doesn't make sense let me know.  

5 0
3 years ago
Many of the whales in the ocean rely upon tiny marine organisms, called plankton, for food. If all of the plankton suddenly died
exis [7]

Answer:

I believe the answer to be B.

Explanation:

Without food, the whales would die.

8 0
3 years ago
I really need help with this
katen-ka-za [31]

<u>C</u> is the correct answer, because energy cannot be created neither destroy. The energy is changing from chemical to from electric to light, and from light to heat.  

8 0
3 years ago
efrigerant-134a is expanded isentropically from 600 kPa and 70°C at the inlet of a steady-flow turbine to 100 kPa at the outlet.
PolarNik [594]

Answer:

Inlet : v_i=0.0646\frac{m}{s}

Outlet:  v_o=0.171\frac{m}{s}

Explanation:

1) Notation and important concepts

Flow of mass represent "the mass of a substance which passes per unit of time".

Flow rate represent "a measure of the volume of liquid that moves in a certain amount of time"

Specific volume is "the ratio of the substance's volume to its mass. It is the reciprocal of density."

Isentropic process is a "thermodynamic process, in which the entropy of the fluid or gas remains constant".

We know that the flow of mass is given by the following expression

\dot{m}=\frac{\dot{V}}{\upsilon}, where \dot{V} represent the flow rate and \upsilon the specific volume at the pressure and temperature given.

A_i=0.5m^2 is the inlet area

P_i=600Kpa pressure at the inlet area

T_i=70C temperature at the inlet area

A_o=1m^2 is the outlet area

P_o=100Kpa pressure at the outlet area

T_o=C temperature at the outlet area

\dot{m}=0.75\frac{kg}{s} represent the flow of mass

If we look at the first figure attached Table A-13 we see that the specific volume for the inlet condition is

\upsilon_i =0.04304\frac{kg}{m^3} and the entropy is h_i=1.0645\frac{KJ}{KgK}=h_o

With the value of entropy and the outlet pressure of 100 Kpa we can find we specific volume at the outlet condition since w ehave the entropy h_o=1.0645\frac{KJ}{KgK}

Since on the table we don't have the exact value we need to interpolate between these two values (see the second figure attached)

h_1=1.0531\frac{KJ}{KgK} , \upsilon_1=0.22473\frac{kg}{m^3}

h_2=1.0829\frac{KJ}{KgK} , \upsilon_2=0.23349\frac{kg}{m^3}

Our interest value would be given using interpolation like this:

\upsilon=0.22473+\frac{(0.23349-0.22473)}{(1.0829-1.0531)}(1.0645-1.0531)=0.228\frac{kg}{m^3}

2) Solution to the problem

Now since we have all the info required to solve the problem we can find the velocities on this way.

We know from the definition of flow of mass that \dot{m}=\frac{\dot{V}}{\upsilon}, but since \dot{V}=Av we have this:

\dot{m}=\frac{Av}{\upsilon}

If we solve from the velocity v we have this:

v=\frac{\upsilon \dot{m}}{A}   (*)

And now we just need to replace the values into equation (*)

For the inlet case:

v_i=\frac{\upsilon_i \dot{m}}{A_i}=\frac{0.043069\frac{kg}{m^3}(0.75\frac{kg}{s})}{0.5m^2}=0.0646\frac{m}{s}

For the oulet case:

v_o=\frac{\upsilon_o \dot{m}}{A_o}=\frac{0.228\frac{kg}{m^3}(0.75\frac{kg}{s})}{1m^2}=0.171\frac{m}{s}

7 0
3 years ago
Other questions:
  • The ocean helps absorb: hydrogen carbon dioxide nitrogen sulfur dioxide
    7·2 answers
  • 1 point
    15·1 answer
  • This question that it pictured
    10·1 answer
  • A paper filled capacitor is charged to a potential difference of 2.1 V and then disconnected from the charging circuit. The diel
    15·1 answer
  • 2. Jessie studies seaweed and she usually takes large amounts of samples. She would take
    7·1 answer
  • Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star.
    11·1 answer
  • Which of newtons laws does F=MA represent
    11·2 answers
  • The diagram shows the process used in gene therapy.
    12·2 answers
  • The football players collide head-on in midair while trying to catch a thrown football. The first player is 95.0 kg and has an i
    5·1 answer
  • What is overtraining?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!