Answer:
b. 1232.08 km/hr
c. 1.02 kn
Explanation:
a) For dynamic similar conditions, the non-dimensional terms R/ρ V2 L2 and ρVL/ μ should be same for both prototype and its model. For these non-dimensional terms , R is drag force, V is velocity in m/s, μ is dynamic viscosity, ρ is density and L is length parameter.
See attachment for the remaining.
Answer:
The elastic modulus of the steel is 139062.5 N/in^2
Explanation:
Elastic modulus = stress ÷ strain
Load = 89,000 N
Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2
Stress = load/area = 89,000/0.64 = 139.0625 N/in^2
Length of steel bar = 4 in
Extension = 4×10^-3 in
Strain = extension/length = 4×10^-3/4 = 1×10^-3
Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2
Because they think it will make them more money
Answer:
Um...
Explanation:
This is what I like to see teachers giving out.
Answer:
Temperature
Explanation:
In an ideal gas the specific enthalpy is exclusively a function of Temperature only this can be also written as h = h(T)
A gas is said be ideal gas if obeys PV= nRT law
And in a ideal gas both internal energy and specific enthalpy are a function of Temperature only. Therefore the constant volume and constant pressure specific heats Cv and Cp are also function of temperature only.