The pairs are:
K, Kr - Same period
Be, Mg - Same group
Ni, Tc - Both are transition metals
B, Ge - Both are metaloids
Al, Pb - Both form inert oxides
TRUE. (Lorenzo Romano Amadeo Carlo Avogadro) Ideal Gas Law that defined as one in which all collisions between atoms or molecules are perfectly elastic in which there are no intermolecular attractive forces. In such a gas, all the internal energy is the form of kinetic energy and any change in internal energy is accompanied by a change in temperature. That characterized by three state variables: absolute pressure (P) = 1 atm, volume (V) = 22.4 L and absolute temperature (T) = 273 K.
Answer:
We need 4.28 grams of sodium formate
Explanation:
<u>Step 1:</u> Data given
MW of sodium formate = 68.01 g/mol
Volume of 0.42 mol/L formic acid = 150 mL = 0.150 L
pH = 3.74
Ka = 0.00018
<u>Step 2:</u> Calculate [base)
3.74 = -log(0.00018) + log [base]/[acid]
0 = log [base]/[acid]
0 = log [base] / 0.42
10^0 = 1 = [base]/0.42 M
[base] = 0.42 M
<u>Step 3:</u> Calculate moles of sodium formate:
Moles sodium formate = molarity * volume
Moles of sodium formate = 0.42 M * 0.150 L = 0.063 moles
<u>Step 4:</u> Calculate mass of sodium formate:
Mass sodium formate = moles sodium formate * Molar mass sodium formate
Mass sodium formate = 0.063 mol * 68.01 g/mol
Mass sodium formate = 4.28 grams
We need 4.28 grams of sodium formate