Answer:
3.0×10⁻¹³ M
Explanation:
The solubility product Ksp is the product of the concentrations of the ions involved. This relation can be used to find the solubility of interest.
<h3>Equation</h3>
The power of each concentration in the equation for Ksp is the coefficient of the species in the balanced equation.
Ksp = [Al₃⁺³]×[OH⁻]³
<h3>Solving for [Al₃⁺³]</h3>
The initial concentration [OH⁻] is that in water, 10⁻⁷ M. The reaction equation tells us there are 3 OH ions for each Al₃ ion. If x is the concentration [Al₃⁺³], then the reaction increases the concentration [OH⁻] by 3x.
This means the solubility product equation is ...
Ksp = x(10⁻⁷ +3x)³
For the given Ksp = 3×10⁻³⁴, we can estimate the value of x will be less than 10⁻⁸. This means the sum will be dominated by the 10⁻⁷ term, and we can figure x from ...
3.0×10⁻³⁴ = x(10⁻⁷)³
Then x = [Al₃⁺³] will be ...
![[\text{Al}_3^{\,+3}]=\dfrac{3.0\times10^{-34}}{10^{-21}}\approx \boxed{3.0\times10^{-13}\qquad\text{moles per liter}}](https://tex.z-dn.net/?f=%5B%5Ctext%7BAl%7D_3%5E%7B%5C%2C%2B3%7D%5D%3D%5Cdfrac%7B3.0%5Ctimes10%5E%7B-34%7D%7D%7B10%5E%7B-21%7D%7D%5Capprox%20%5Cboxed%7B3.0%5Ctimes10%5E%7B-13%7D%5Cqquad%5Ctext%7Bmoles%20per%20liter%7D%7D)
We note this value is significantly less than 10⁻⁷, so our assumption that it could be neglected in the original Ksp equation is substantiated.
__
<em>Additional comment</em>
The attachment shows the solution of the 4th-degree Ksp equation in x. The only positive real root (on the bottom line) rounds to 3.0×10^-13.
The answer would be the 3. Mg + energy--> mg+ + e-
Ionization Energy is the amount of energy vital to eliminate the most loosely bond electron from an atom in the gas stage. Since Magnesium has a higher first energy which is 738 kj/mol, is the energy needed to remove the outermost, or highest energy.
Explanation:
It is known that for a body centered cubic unit cell there are 2 atoms per unit cell.
This means that volume occupied by 2 atoms is equal to volume of the unit cell.
So, according to the volume density
![5 \times 10^{26} atoms = 1 [tex]m^{3}](https://tex.z-dn.net/?f=5%20%5Ctimes%2010%5E%7B26%7D%20atoms%20%3D%201%20%5Btex%5Dm%5E%7B3%7D)
2 atoms = 
= 
Formula for volume of a cube is
. Therefore,
Volume of the cube = 
As lattice constant (a) = 
= 
Therefore, the value of lattice constant is
.
And, for bcc unit cell the value of radius is as follows.
r = 
Hence, effective radius of the atom is calculated as follows.
r = 
= 
= 
Hence, the value of effective radius of the atom is
.
<span>In the
said law, the volume of a gas varies inversely with pressure. Boyle's law is
one of the gas laws we have. According to this law, at a fixed amount of an
ideal gas which is at constant temperature, the pressure and volume are
inversely proportional with each other. <span>The variables are volume and
pressure.</span></span>
Answer:
Colloids (heterogeneous)
The difference between a colloid and a suspension is that the particles will not settle to the bottom over a period of time, they will stay suspended or float. An example of a colloid is milk. Milk is a mixture of liquid butterfat globules dispersed and suspended in water.