Answer:
It is psuedoscience because each metal is known to be a unique element.
Explanation:
The normal freezing point of water is 0 degree Celsius and the normal boiling point of water is 100 degree Celsius. To convert these temperatures to Kelvin, you will add 273 to them. Thus, the freezing point of water at Kelvin temperature is 273K and the boiling point of water in Kelving is 373 K.
Explanation:
A chemical reaction is defined as the reaction in which bonds between the reactants either break or form which leads to the formation of a new substance.
For example, 
So, when we drop a sodium metal into water then it produces a frizzing sound which shows the metal is reacting with water.
We know that when two aqueous solutions chemically react with each other then it may lead to the formation of an insoluble substance which is known as precipitate.
This means that formation of a precipitate is also a chemical reaction.
Thus, we can conclude that following are the statements which show evidence for a chemical reaction.
- Dropping sodium metal into water produces fizzing.
- Mixing two aqueous solutions produces a precipitate.
If there's just some barium put in an aqueous solution, then it should be something like this.
It's a mixture of a solution and an insoluble solid, so the easiest way to go is through filtration. (Also, I'm assuming the barium is cut into very small chips.)
In a line, simply filter the solution using a folded filter paper in a funnel, collect the residue in a beaker or flask, rinse it with distilled water and let it dry. (Or simply filtering it could be enough, depending on how far your teacher wants you to go.)
Stuff needed:
>filter paper (for separating the solid from the solution)
>funnel (to hold the filter paper)
>beaker or flask (to hold the filtrate)
>distilled water (to rinse the solid)
>spatula (to scoop up the solid)
Procedure:
>Fold filter paper and line the funnel with it. Place the funnel in the flask or beaker.
>Pour solution in. Then add water (I think using tap water might be fine in this case, but you can use distilled water if you'd like) to wash out the container with the solution of any solid you may have not gotten in the first try. Alternatively, you could use a spatula to spoon it onto the filter paper.
>Once everything has been filtered, pour some distilled water on the residue on the filter paper to wash away the solution.
>Take out the filter paper, open it up and let it dry.
This can be used in real life in many occasions. For example, when you make tea, you need to filter the leaves out. Or when you cook the pasta, you put it in a sieve to separate the pasta from the water. Or when you fish using fishing nets, you "filter" the fish from the water.
Answer:
2.8 g KOH
Explanation:
We can find the amount of moles we need by multiplying 0.500 L and the molarity given, 0.10 M (molarity is moles of solute divided by liters of solution). The liters cancel out, leaving us with moles; we can then take the moles and convert it to grams of KOH by using the molar mass of KOH.
0.500 L x 0.10 mol/1 L x 56.106 g /1 mol = 2.8 g KOH (two significant figures)