The weight of the car in the picture of the computer screen is 9,800 Newton's.
Answer:
minimum thickness of the coating = 122.868 nm
Explanation:
Given data
lens index of refraction = 1.29
wavelength = 634 nm
glass index of refraction = 1.53
to find out
minimum thickness of the coating
solution
we have given non reflective coating
so
we know that minimum thickness of the coating formula
minimum thickness of the coating = Wavelength / 4n
here n is coating index of refraction
so put here both value to get thickness
minimum thickness of the coating = Wavelength / 4n
minimum thickness of the coating = 634 / 4 ( 1.29 )
so minimum thickness of the coating = 122.868 nm
There's no way to tell. Without seeing a diagram of the circuit,
I'll need to know much more about it than you've told me.
I don't know anything about the components or power supply
that are in the circuit, and I don't know where point ' f ' is in it.
Right now, even with the copious volume of all the available
information, no answer to your question is possible.
Answer:
(a) Magnitude of static friction force is 109 N
(b) Minimum possible value of static friction is 0.356
Solution:
As per the question;
Horizontal force exerted by the girl, F = 109 N
Mass of the crate, m = 31.2 kg
Now,
(a) To calculate the magnitude of static friction force:
Since, the crate is at rest, the forces on the crate are balanced and thus the horizontal force is equal to the frictional force, f:
F = f = 109 N
(b) The maximum possible force of friction between the floor and the crate is given by:

where
N = Normal reaction = mg
Thus

For the crate to remain at rest, The force exerted on the crate must be less than or equal to the maximum force of friction.



