Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.
They will occupy less volume which will cause an increased density of the particles.
Ill provide the answer choices here, assuming its from edge.
A) Sasha’s monthly expenses would be less for buying than for renting.
B) The extra expenses in the mortgage payment cover all maintenance and repairs.
C) Sasha’s down payment will likely be less if she decided to buy.
D) Sasha will own the house and earn equity as its value increases.
the correct answer is D) Sasha will own the house and earn equity as its value increases.
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²