The concept required to solve this problem is the optical relationship that exists between the apparent depth and actual or actual depth. This is mathematically expressed under the equations.

Where,
Depth of glass
Refraction index of water
Refraction index of glass
Refraction index of air
Depth of water
I enclose a diagram for a better understanding of the problem, in this way we can determine that the apparent depth in the water of the logo would be subject to



Therefore the distance below the upper surface of the water that appears to be the logo is 4.041cm
The result of the Mexican victory was that fallen defenders
became heroes to the cause of Texan independence.<span> The Battle of
the Alamo took place between February 23 and March 6, 1836 and became the
central episode of the Texas
Revolution . After this thirteen-day battle, the
Mexican troops of General President Antonio
Lopez de Santa Anna began an attack on San Antonio de
Bexar, the current San Antonio in Texas. The Battle of the Alamo fought the
army of Mexico against
a group of Texan rebels, mostly American settlers. More than four thousand
men from Santa Ana stood in front of
the Alamo Fort , the last stronghold of the rebels, which
barely reached 187. The Alamo was not a fortress prepared to withstand a siege.
It is believed that all the rebels of the Alamo died in the siege, but Santa
Anna came to lose up to about 900 men during the days that lasted the fight. However,
the worst result for Santa Ana was precisely the resistance that the Texan
rebels had in the Alamo, which fostered the fighting spirit of the Texans. A
few days later, on March 14, 1836, Texas became independent from Mexico and a
month later, Santa Ana was imprisoned.</span>
I believe its the third answer
Answer:
Chief Hopper
Explanation:
Mike travels at a constant speed of 3.1 m/s. To find how long it takes him to reach the school, we need to find the distance he travels. We can do this using Pythagorean theorem.
a² + b² = c²
(1000 m)² + (900 m)² = c²
c ≈ 1345 m
So the time is:
v = d / t
3.1 m/s = 1345 m / t
t ≈ 434 s
Next, Chief Hopper travels a total distance of 1900 m, starting at rest and accelerating at 0.028 m/s². So we can use constant acceleration equation to find the time.
d = v₀ t + ½ at²
1900 m = (0 m/s) t + ½ (0.028 m/s²) t²
t ≈ 368 s
So Chief Hopper reaches the school first, approximately 66 seconds before Mike does.
Answer:
Explanation:
The hand throwing ball moves on a circular path having radius r = .55 m
mass of ball m = .19 kg
velocity v = 70 mph
= 70 x 1600 / 60 x 60
= 31.11 m /s
centripetal force
= mv² / r
= .19 x 31.11² / .55
= 334.34 N