Answer:
The pendulum frequency is (c) the same, or very close to it
Explanation:
The simple pendulum corresponds to a simple harmonic movement, to reach this approximation in the expression of the force the sine of the angle (θ) approaches an angle value, this is only true for small angles, generally less than 15º
Sine (15th) = 0.2588
The angle in radians is 15º π / 180º = 0.26180.2588 / 0.2618
The difference between these two values is less than 1.2%
for smaller angle the difference is reduced more
Therefore, the period for both the 5º and 10º angles is almost the same
Answer:
48kg
Explanation:
i could be wrong if i am srry
Answer:
We say fictitious because the actual source of the centrifugal acceleration is somewhat indirect and the experience one has results from the unbalanced forces acting on the reference frame, not a force. Note, it is an acceleration not a force. For instance, imagine yourself on a swing.
Answer:
Explanation:
The mass of the block is 0.5kg
m = 0.5kg.
The spring constant is 50N/m
k =50N/m.
When the spring is stretch to 0.3m
e=0.3m
The spring oscillates from -0.3 to 0.3m
Therefore, amplitude is A=0.3m
Magnitude of acceleration and the direction of the force
The angular frequency (ω) is given as
ω = √(k/m)
ω = √(50/0.5)
ω = √100
ω = 10rad/s
The acceleration of a SHM is given as
a = -ω²A
a = -10²×0.3
a = -30m/s²
Since we need the magnitude of the acceleration,
Then, a = 30m/s²
To know the direction of net force let apply newtons second law
ΣFnet = ma
Fnet = 0.5 × -30
Fnet = -15N
Fnet = -15•i N
The net force is directed to the negative direction of the x -axis
The "penetration of the bullet" is 5 m
<u>Explanation</u>:
A "bullet" with "kinetic energy" of = 400J
A resistive force stops the bullet = 8.00 x 10 N
Work = change in energy
Work = ∆ Kinetic Energy (equation 1)
Work =
(equation 2)
From equations 1 and 2 we have,
= ∆ Kinetic Energy
Where
,
Kinetic Energy = 400 J
F = 8.00 x 10 N
(8.00 x 10 N) d = 400 J
(80 N) d = 400 J

d = 5 m
The penetration of the bullet is 5 m