Answer:
Option C = internal energy stays the same.
Explanation:
The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.
So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.
Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.
The amount of heat,q = Work,w.
In the concept of free expansion the only thing that changes is the volume.
Answer:
Rate of Entropy =210.14 J/K-s
Explanation:
given data:
power delivered to input = 350 hp
power delivered to output = 250 hp
temperature of surface = 180°F
rate of entropy is given as
T = 180°F = 82°C = 355 K
Rate of heat = (350 - 250) hp = 100 hp = 74600 W
Rate of Entropy
Answer:
Explanation:
= Area of section 1 =
= Velocity of water at section 1 = 100 ft/min
= Specific volume at section 1 =
= Density of fluid =
= Area of section 2 =
Mass flow rate is given by
The mass flow rate through the pipe is
As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1
The speed at section 2 is .
Answer:
The time required is 10.078 hours or 605 min
Explanation:
The formula to apply here is ;
K=(d²-d²₀ )/t
where t is time in hours
d is grain diameter to be achieved after heating in mm
d₀ is the grain diameter before heating in mm
Given
d=5.5 × 10^-2 mm
d₀=2.4 × 10^-2 mm
t₁= 500 min = 500/60 =25/3 hrs
t₂=?
n=2.2
First find K
K=(d²-d²₀ )/t₁
K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3
K=(0.051²-0.024²) ÷25/2
K=0.000243 mm²/h
Re-arrange equation for K ,to get the equation for d as;
d=√(d₀²+ Kt) where now t=t₂