To solve this problem it is necessary to apply the concepts related to the heat exchange of a body.
By definition heat exchange in terms of mass flow can be expressed as

Where
Specific heat
= Mass flow rate
= Change in Temperature
Our values are given as
Specific heat of air



From our equation we have that


Rearrange to find 

Replacing


Therefore the exit temperature of air is 53.98°C
Ice. The formation of ice in the myriad of tiny cracks and joints in a rock's surface slowly pries it apart over thousands of years. Frost wedging results when the formation of ice widens and deepens the cracks, breaking off pieces and slabs. Frost wedging is most effective in those climates that have many cycles of freezing and thawing. Frost heaving is the process by which rocks are lifted vertically from soil by the formation of ice. Water freezes first under rock fragments and boulders in the soil; the repeated freezing and thawing of ice gradually pushes the rocks to the surface.
Answer:
Explanation:
From the information given;
The velocity of the wind blow V = 7 m/s
The diameter of the blades (d) = 80 m
Percentage of the overall efficiency 
The density of air 
Then, we can use the concept of the kinetic energy of the wind blowing to estimate the mechanic energy of air per unit mass by using the formula:

here;
m = 
= 
= 43982.29 kg/s
∴




The actual electric power is:



Answer:
hello your question is incomplete attached below is the complete question
answer : Drag force = 1.3 Ib
Explanation:
we have to represent the dimensions of the drag force in terms of FLT
i.e : D = f( <em>d,v,p,u </em>) represented in terms of FLT
D = F , V = LT^-1, d = L, p = FL^-4 T^2
u = FL^-2 T, Number of independent terms = 5
attached below is the detailed solution
I dont know the answer to this