Let's assume that ground level is the height 0 meters. The change in potential energy is going to be gravitational potential energy, which is given by PE=mgh.
ΔPE=mgh-mgy
=mg(h-y)
=50(28-0)
=1400 J
Answer:
Angular momentum = 0.7 kg.m²/s
Angular velocity = 583.3 rad/s
Explanation:
1. The torque τ is related to the angular momentum L by the relation
τ = ΔL/Δt
ΔL = τΔt
τ = 10 N. m
Δt = 70 ms = 70 × 10⁻³s
ΔL = (10 N. m) × (70 × 10⁻³s) = 700 × 10⁻³ kg.m²/s = 0.7 kg.m²/s
2. The rotational inertia I relates the angular momentum L to the angular velocity w
L = Iw
w = L/I
L = 0.7 kg.m²/s
I = 1.2 × 10⁻³ kg.m²
w = (0.7 kg.m²/s)/(1.2 × 10⁻³ kg.m²) = 583.3 rad/s
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the car is
The period of the circular motion is 
The radius is 
Generally the frequency of the circular motion is

=> 
=> 
m = 43.2 kg
Explanation:
volume of sphere = (4/3)pi(r)^3
= (4/3)(3.14)(2 m)^3
= 33.5 m^3
density = mass/volume
or solving for mass m,
m = (density)×(volume)
= (1.29 kg/m^3)(33.5 m^3)
= 43.2 kg
Answer:
It will be easier to break the meter rule with the long side against my knee.
Explanation:
To break the meter rule involves the principle of bending moment. The long side will require less force to generate the same amount of bending moment that will have to be generated to break the meter rule. The short side on the other hand will require more force to generate this mount of bending moment. This is because the shorter has a very small surface area, which concentrates the force on your knee. The pressure is then dissipated as more pressure to your knee. Th longer side has a lesser surface area so, most of the force is used in breaking the meter rule.