Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The best example of how electromagnetic energy is used in everyday life is <span>a patient receiving an X-ray in a hospital</span>
Answer:
Explanation:
A supersaturated solution is unstable—it contains more solute (in this case, sugar) than can stay in solution—so as the temperature decreases, the sugar comes out of the solution, forming crystals. The lower the temperature, the more molecules join the sugar crystals, and that is how rock candy is created.
<em><u>Protons</u></em><em><u> = Positive Charge</u></em>
<em><u>Neutrons</u></em><em><u> = Neutral Charge/No Charge</u></em>
<em><u>Electrons</u></em><em><u> = Negative Charge</u></em>
<em>This one's simple: electrons have a negative charge, protons have a positive charge and neutrons — as the name implies — are neutral.</em>
<u><em>Protons</em></u>
<em>Elements are differentiated from each other by the number of protons within their nucleus. For example, carbon atoms have six protons in their nucleus. Atoms with seven protons are nitrogen atoms. The number of protons for each element is known as the atomic number and does not change in chemical reactions. In other words, the elements at the beginning of a reaction -- known as the reactants -- are the same elements at the end of a reaction -- known as the products.</em>
<em />
<em><u>Neutrons</u></em>
<em>Although elements have a specific number of protons, atoms of the same element may have different numbers of neutrons and are termed isotopes. For example, hydrogen has three isotopes, each with a single proton. Protium is an isotope of hydrogen with zero neutrons, deuterium has one neutron, and tritium has two neutrons. Although the number of neutrons may differ between isotopes, the isotopes all behave in a chemically similar manner.</em>
<em />
<u><em>Electrons</em></u>
<em>Electrons are not bound as tightly to the atom as protons and neutrons. This allows electrons to be lost, gained or even shared between atoms. Atoms that lose an electron become ions with a +1 charge, since there is now one more proton than electrons. Atoms that gain an electron have one more electron than protons and become a -1 ion. Chemical bonds that hold atoms together to form compounds result from these changes in the number and arrangement of electrons.</em>
Answer:
Explanation:
In CF4 and NF3, the valence electron groups on the central C and N atoms have a tetrahedral arrangement. The shapes of the molecules are determined by the number of bonding and nonbonding of electrons: since CF4 has four bonded atom(s) and zero lone pair(s) of electrons, the shape is tetrahedral.
Answer:
There are 1.287 grams of acetylene collected
Explanation:
Total gas pressure = 909 mmHg
Vapor pressure of water = 20.7 mmHg
Pressure of acetylene = 909 mmHg - 20.7 mmHg = 888.3 mmHg
1mmHg = 1 torr
22 ° C + 273.15 = 295.15 Kelvin
Ideal gas law ⇒ pV = nRT
⇒ with p = pressure of the gas in atm
⇒ with V = volume of the gas in L
⇒ with n = amount of substance of gas ( in moles)
⇒ with R = gas constant, equal to the product of the Boltzmann constant and the Avogadro constant (62.36 L * Torr *K^−1 *mol^−1)
⇒ with T = absolute temperature of the gas (in Kelvin)
888.3 torr * 1.024 L = n * 62.36 L * Torr *K^−1 *mol^−1 * 295.15 K
n = 0.04942 moles of C2H2
Mass of C2H2 = 0.04942 moles x 26.04 g/mole = 1.287 g
There are 1.287 grams of acetylene collected