Answer:

Explanation:
Since the <em>rate constant</em> has units of <em>s⁻¹</em>, you can tell that the order of the reaction is 1.
Hence, the rate law is:
![r=d[A]/dt=-k[A]](https://tex.z-dn.net/?f=r%3Dd%5BA%5D%2Fdt%3D-k%5BA%5D)
Solving that differential equation yields to the well known equation for the rates of a first order chemical reaction:
![[A]=[A]_0e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_0e%5E%7B-kt%7D)
You know [A]₀, k, and t, thus you can calculate [A].
![[A]=0.548M\times e^{-3.6\cdot 10^{-4}/s\times99.2s}](https://tex.z-dn.net/?f=%5BA%5D%3D0.548M%5Ctimes%20e%5E%7B-3.6%5Ccdot%2010%5E%7B-4%7D%2Fs%5Ctimes99.2s%7D)
![[A]=0.529M](https://tex.z-dn.net/?f=%5BA%5D%3D0.529M)
Answer:
38.75 L
Explanation:
From the question,
Applying Boyles Law,
PV = P'V'....................... Equation 1
Where P = Original pressure of the Argon gas, V = Original Volume of Argon gas, P' = Final pressure of Argon gas, V' = Final Volume of Argon gas.
make V the subject of the equation
V = P'V'/P.................... Equation 2
Given: P = 34.6 atm, V' = 456 L, P' = 2.94 atm.
Substitute these values into equation 2
V = (456×2.94)/34.6
V = 38.75 L
1) 0.89% m/v = 0.89 grams of NaCl / 100 ml of solution
=> 8.9 grams of NaCl in 1000 ml of solution = 8.9 grams of NaCl in 1 liter of solution
2) Molarity = M = number of moles of solute / liters of solution
=> calculate the number of moles of 8.9 grams of NaCl
3) molar mass of NaCl = 23.0 g /mol + 35.5 g/mol = 58.5 g / mol
4) number of moles of NaCl = mass / molar mass = 8.9 g / 58.5 g / mol = 0.152 mol
5) M = 0.152 mol NaCl / 1 liter solution = 0.152 M
Answer: 0.152 M
Layla it is A. that's the only one in standard form.
Answer:
2.67 × 10⁻²
Explanation:
Equation for the reaction is expressed as:
CaCrO₄(s) ⇄ Ca₂⁺(aq) + CrO₂⁻⁴(aq)
Given that:
Kc=7.1×10⁻⁴
Kc= ![[Ca^{2+}][CrO^{2-}_4]](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5BCrO%5E%7B2-%7D_4%5D)
Kc= [x][x]
Kc= [x²]
7.1×10⁻⁴ = [x²]
x = 
x = 0.0267
x = 