Answer:
0.482 ×10²³ molecules
Explanation:
Given data:
Volume of gas = 2.5 L
Temperature of gas = 50°C (50+273 = 323 k)
Pressure of gas = 650 mmHg (650/760 =0.86 atm)
Molecules of N₂= ?
Solution:
PV= nRT
n = PV/RT
n = 0.86 atm × 2.5 L /0.0821 atm. mol⁻¹. k⁻¹. L × 323 k
n = 2.15 atm. L /26.52 atm. mol⁻¹.L
n = 0.08 mol
Number of moles of N₂ are 0.08 mol.
Number of molecules:
one mole = 6.022 ×10²³ molecules
0.08×6.022 ×10²³ = 0.482 ×10²³ molecules
Hello there!
Electronegativity is what determine's an atoms ability to attract electrons shared in a chemical bond.Ionization, atomic radius, and also <span> ionic radius both would not determine this as they wouldn't have any similar bond that would attract.
</span><span>
Your correct answer would be (option c)
</span><span>A. ionization
B. atomic radius
C. electronegativity
D. ionic radius
I hope this helps you!</span>
Explanation:
The molecules of solids are shrinked in there normal state . but as a heat energy is produced , the molecules starts curating fast and fast as temperature goes up . since they vibrate , they hit and collide each other breaking the bondings this increases the surface of area of the solid , and molecules consumes that space and they expand .
If I'm correct the answer should be a series circuit :) Hopefully this helps you out
The answer is ignore this thanks