The critical angle formula should be: sin^-1(1/n)
where "n" is 1.501 into the air
<span>The critical angle of light travelling from benzene, happens because the larger angles of incidence from the inside of the benzene has experienced the total internal reflection. </span>
Most of the stars in our universe are in binary systems. Hence, the size of the stars can be found when one star eclipses the other. When so happens, the change in the luminosity is measured and size is calculated. Another way is by measuring the luminosity of the star and comparing it with the Sun's luminosity. As the luminosity is dependent on the size of the star, the radius of the star can be calculated when compared to the Sun. Following formula can be used:
Star's radius/Sun's radius = (Sun's temperature/star's temperature)2 Sqrt[star's luminosity/Sun's luminosity].
<span>During 1970s, same observations were seen as what we have observed today pertaining to our climate. Journals were discussing that there would be warming because of greenhouse gases emissions. Also, it was observed between the years 1970 to 1990 that there was a steady surface temperature increase. Due to this, people are now fixated with global warming rather than on global cooling.</span>
Answer:
Explanation:
The work increased the potential energy
W = PE = mgh = 40(9.8)(15) = 5880 J(oules)
Answer:
a. Speed = 1.6 m/s
b. Amplitude = 0.3 m
c. Speed = 1.6 m/s
Amplitude = 0.15 m
Explanation:
a.
The frequency of the wave must be equal to the reciprocal of the time taken by the boat to move from the highest point to the highest point again. This time will be twice the value of the time taken to travel from the highest point to the lowest point:
frequency =
= 0.25 Hz
The wavelength of the wave is the distance between consecutive crests of wave. Therefore,
Wavelength = 6.4 m
Now, the speed of the wave is given as:
Speed = (Frequency)(Wavelength)
Speed = (0.25 Hz)(6.4 m)
<u>Speed = 1.6 m/s</u>
<u></u>
b.
Amplitude is the distance between the mean position of the wave and the extreme position. Hence, it will be half the distance between the highest and lowest point:
Amplitude = (0.5)(0.6 m)
<u>Amplitude = 0.3 m</u>
<u></u>
c.
frequency =
= 0.25 Hz
Speed = (Frequency)(Wavelength)
Speed = (0.25 Hz)(6.4 m)
<u>Speed = 1.6 m/s</u>
<u></u>
Amplitude = (0.5)(0.3 m)
<u>Amplitude = 0.15 m</u>