<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
Explanation:
because it doesn't depend upon other unit like kg meter and second
Answer:force is an agent which change the state of rest or uniform motion of a body. The unit of force newton
Explanation:
Force is that which change the state of rest or uniform motion of an object.the unit of force is newton or kgm/s^2
Answer:
Cracking of an egg is a physical change since the egg and the stuff inside does not change but the shape or appearance of the shell changes.
Explanation:
Hope it helps
Answer:
Explanation:
1 )
We shall apply conservation of momentum law to solve the problem.
mv = ( M +m) V , m and M are masses of small and large object , v is the velocity of small object before collision and V is the velocity of both the objects together after collision .
.5 x .2 = (1.5 + .5)V
V = .05 m /s
2 ) We shall use formula for velocity of object after elastic collision as follows
v₁ =
m₁ and m₂ are masses of first and second object u₁ and u₂ are their initial velocity and v₁ and v₂ are their final velocity.
Putting the values
=
= - .66 m /s
Since the sign is negative so it will be in opposite direction .