Answer:
5.en
6.ex
7.ex
8.en
Explanation:
<h3>#CARRY ON LEARNING</h3><h3>#BRAINLITS </h3>
Answers:
a) 30 m/s
b) 480 N
Explanation:
The rest of the question is written below:
a. What is the final speed of the falcon and pigeon?
b. What is the average force on the pigeon during the impact?
<h3>a) Final speed</h3>
This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum
before the collision must be equal to the final momentum
after the collision:
(1)
Being:


Where:
the mas of the peregrine falcon
the initial speed of the falcon
is the mass of the pigeon
the initial speed of the pigeon (at rest)
the final speed of the system falcon-pigeon
Then:
(2)
Finding
:
(3)
(4)
(5) This is the final speed
<h3>b) Force on the pigeon</h3>
In this part we will use the following equation:
(6)
Where:
is the force exerted on the pigeon
is the time
is the pigeon's change in momentum
Then:
(7)
(8) Since 
Substituting (8) in (6):
(9)
(10)
Finally:

Answer:
The correct answer is the Convex lens. An image is formed when a ray of light coming from a point intersects at another point. The image is formed by the real intersection of light. The image is formed by the virtual intersection of Light.
here is the site : textbook.com
Answer:
True
Explanation:
Momentum of an object can be defined as the product of its mass and velocity at which it is travelling. With that in mind, momentum = 3*100=300(kg⋅m/s).
One thing to note is the units mentioned. The SI unit of momentum is kg * m/s as it is the product of mass(kilograms) and velocity(meter per second) and not Newton.
Power = work/time = (Force times distance)/time
= (30N *10.0m)/5.00s = 300/5 = 60 Watts