Answer:As the temperature increases, the helium in the ballon expands.
Explanation:
I took the quiz already
Answer:
6.03 mV
Explanation:
length of solenoid, L = 2 m, N = 12000, di/dt = 40 A/s,
Magnetic field due to solenoid
B = μ0 n i = μ0 N i / L
dB/dt = μ0 N / L x di / dt
dB /dt = (4 x 3.14 x 10^-7 x 12000 x 40) / 2 = 0.3 T/s
Induced emf, e = rate of change of magnetic flux
e = dΦ / dt = A x dB / dt
e = 3.14 x 0.08 x 0.08 x 0.3 = 6.03 x 10^-3 V = 6.03 mV
Answer:
5 ohms
Explanation:
Given:
EMF of the ideal battery (E) = 60 V
Voltage across the terminals of the battery (V) = 40 V
Current across the terminals (I) = 4 A
Let the internal resistance be 'r'.
Now, we know that, the voltage drop in the battery is given as:
Therefore, the voltage across the terminals of the battery is given as:

Now, rewriting in terms of 'r', we get:

Plug in the given values and solve for 'r'. This gives,

Therefore, the internal resistance of the battery is 5 ohms.
Answer:
b. amplitude
Explanation:
An electromagnetic waveconsists of electrical oscillations and magnetic fields. The frequency of the wave is directly proportional to its energy and its speed and inversely proportional to its wavelength. Therefore, with the only magnitude with which it has no relation is with its amplitude.