There is no Bo element, however there is a B element which is Boron
Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
Answer:
K2SO4(aq) + Ba(NO3)2(aq)
Explanation:
K2SO4(aq) + Ba(NO3)2(aq)= 2KNO3(aq) + BaSO4(s)
The reaction produces BaSO4
Which precipitates as the insoluble product and Soluble KNO3 solution
Answer:
AWWWWWWWWWWWWWWWW SOOO NICEEE
Radioactive material undergoes 1st order decay kinetics.
For 1st order decay, half life = 0.693/k
where k = rate constant
k = 0.693/half life = 0.693/8.02 = 0.0864 day-1
Now, for 1st order reaction,
k =

Given: t = 6.01d, initial conc. = 5mg
∴0.0864 =

∴ final conc. = 2.975 mg