Answer:
560 m
Explanation:
The speed of sound in air is approximately:
v ≈ v₀ + 0.6T
where v₀ is the speed of sound at 0°C (273 K) in m/s, and T is the temperature in Celsius.
The speed of sound at 20°C at that altitude is:
v ≈ 327 + 0.6(20)
v ≈ 339 m/s
The sound travels from the hikers to the mountain and back again, so it travels twice the distance.
339 m/s = 2d / 3.3 s
2d = 1118.7 m
d = 559.35 m
Rounding, the mountain is approximately 560 m away.
To solve the problem it is necessary to identify the equation in the manner given above.
This equation corresponds to the displacement of a body under the principle of simple harmonic movement.
Where,

PART A) Our equation corresponds to

Therefore the value of omega is equivalent to that of

From the definition we know that the period as a function of angular velocity is equivalent to



This same point is the equivalent of the maximum point of the speed that the body can reach, since the internal expression of the
Is equivalent to . So the maximum speed that the body can reach is,



Therefore the maximum felocity will be 5ft / s
PART B) The period of graph is the time taken to reach from one maximum point to next point maximum point, then


Answer:
Because the zinc is reluctant
Explanation:
A leclanche cell contains a conducting solution (electrolyte) of ammonium chloride, a cathode (positive terminal) of carbon, a depolarizer of manganese dioxide (oxidizer), and an anode (negative terminal) of zinc (reductant).
As the Zn2+ ions move away from the anode, leaving their electrons on its surface,
Zn → Zn2+ + 2e−
the anode becomes more negatively charged than the cathode. When the cell is connected to an external electrical circuit, the excess electrons on the zinc anode flow through the circuit to the carbon rod, the movement of electrons forming an electric current.
Answer:
24mph
Explanation:
it really depends how high but the average speed for that quick will be atleast 24mph if not try 42mph if it is wrong