Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:



b) Force on deep end:



c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:




2) Force on the triangular part:

here
h = h(d) - h(s)
h = 10-4
h = 6ft



now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom:



Answer:
When two objects collide and stick together, what will happen to their speed, assuming momentum is conserved? They will move at the same velocity as whichever object was fastest initially. They will move at the same velocity of whichever object was slowest initially.
Explanation:
Answer:
True
Explanation:
This can be explained by the special theory of relativity for length contraction.
Length contraction is observed in the direction of motion of an object when an object moves with speed closer to the speed of light.
The length of the rocket in this case, appears shorter to the observer on earth in the stationary reference frame which is improper frame whereas the traveler in the rocket is in the same inertial frame which is proper for the rocket's size measurement.
<h3>2
Answers:</h3>
a) Velocity is a vector quantity
e) Velocity is a speed with direction
=================================================
Explanation:
If we know the velocity of an object, then we know how fast it's going (speed) and where it's going (direction). It is a vector because the direction of the vector determines the direction, and the length of the vector (aka magnitude) determines the speed. So in a sense we've built in two facts of data into one visual.
An example of velocity: 10 miles per hour north. Here we have the speed of 10 mph and the direction north.
-------------------
Extra info:
- Choice B contradicts choice A, so we can cross choice B off the list.
- Choice C is false because speed is a scalar, or single quantity, and not a vector. As mentioned earlier, speed is a part of velocity, but they aren't the same exact thing.
- Choice D is false because the velocity does not account for net force. We don't have any force information built into the velocity.
Answer:
3.03e-19 J
Explanation:
Use the formula E = hc/λ
Where:
h (Planck's constant) = 6.626e-34 J*s
c (speed of light, constant) = 3.00e8 m/s
λ (wavelength) = 656e-9 m
E = energy (in Joules)
E = (6.626e-34 * 3.00e8) / 656e-9 = 3.03018293e-19 = 3.03e-19 J