The net force acting on the crate is determined as 176 N to the left.
<h3>Net force acting on the crate</h3>
The net force acting on the crate is calculated as follows;
∑F = F1 + F2 + F3 + F4
F(net) = -440y + 176x + 440y - 352x
F(net) = -176 x
The resultant force is pointing in negative x direction.
Thus, the net force acting on the crate is determined as 176 N to the left.
Learn more about net force here: brainly.com/question/14361879
#SPJ1
The solution to this ques is available in the image.
Given,
Force= 1N
Mass= 0.11kg
Time= 5sec
Force= mass X accelaration
Accelaration= velocity/ time
Speed=distance/ time
Hence, the speed is 45 m/s and the distance is 225 m.
To know more about speed and distance problems the link is given below:
brainly.com/question/19610984?
#SPJ4
Answer:
while ice is made by water again it melts and becomes water. water is colourless and odourless and has no taste but ice is only cold and hard. water is used for drinking and other things. but is for freshness and it never flows
Explanation:
so ice reflect more energy compared to water
Answer:
She must stop the car before interception, distance traveled 12.66 m
Explanation:
We will take all units to the SI system
Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s
V2 = 70 Km / h = 19.44 m / s
We calculate the distance traveled before stopping
X = Vo t + ½ to t²
Time is what it takes traffic light to turn red is t = 2.0 s
X = 13.33 2 + 1.2 (-7) 2²
X = 12.66 m
It stops car before reaching the traffic light turning to red
Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle
V2 = Vo + a t2
a = (V2-Vo) / t2
a = (19.44-13.33) /6.6
a = 0.926 m / s2
This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)
X = Vo t + ½ to t²
X = 13.33 2 + ½ 0.926 2²
X = 28.58 m
Since the vehicle was 30 m away, the interception does not happen
Answer:
No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.
Explanation:
Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart such that, in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Similarly, energy is needed to vaporize a liquid, because molecules in a liquid interact with each other via attractive forces. There is no temperature change until a phase change is complete. The temperature of a cup of soda initially at 0ºC stays at 0ºC until all the ice has melted. Conversely, energy is released during freezing and condensation, usually in the form of thermal energy. Work is done by cohesive forces when molecules are brought together. The corresponding energy must be given off (dissipated) to allow them to stay together Figure 2.
The energy involved in a phase change depends on two major factors: the number and strength of bonds or force pairs. The number of bonds is proportional to the number of molecules and thus to the mass of the sample. The strength of forces depends on the type of molecules. The heat Q required to change the phase of a sample of mass m is given by
Q = mLf (melting/freezing,
Q = mLv (vaporization/condensation),
where the latent heat of fusion, Lf, and latent heat of vaporization, Lv, are material constants that are determined experimentally.