To convert minutes to hours we divide the minutes by 60. So if we divide 3 by 60 we get 0.05 hours.
<h3>How to convert minutes into hour?</h3>
We know that in hour, there are 60 minutes so if we go from minutes to hours then we have to divide the number by 60 and when we go from hours to minutes we multiply with the same 60 number.
So we can conclude that to convert minutes to hours we divide the minutes by 60. So if we divide 3 by 60 we get 0.05 hours.
Learn more about hour here: brainly.com/question/291457
#SPJ1
The best answer that I can give you is, the Plate.
Answer:
The correct answer is - Frequency is the number of wavelengths, which is measured in hertz.
Explanation:
Frequency is the number of waves that go through a fixed point at a particular time. Hertz is the SI unit for frequency which means that one hertz is equal to a unit number of waver passes in a unit time to a fixed point.
As the frequency of a wave increases which means the number of waves increases in the unit time, the shorter the wavelength will be.
a higher frequency wave has more energy than a lower frequency wave with the same amplitude.
Answer:
m= 29.645 g
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
density of wood = 0.77 g/cm³
volume= 38.5 cm³
mass= ?
Solution:
d= m/v
m= d × v
m= 0.77 g/cm³× 38.5 cm³
m= 29.645 g
Answer:
75 mg
Explanation:
We can write the extraction formula as
x = m/[1 + (1/K)(Vaq/Vo)], where
x = mass extracted
m = total mass of solute
K = distribution coefficient
Vo = volume of organic layer
Vaq = volume of aqueous layer
Data:
m = 75 mg
K = 1.8
Vo = 0.90 mL
Vaq = 1.00 mL
Calculations:
For each extraction,
1 + (1/K)(Vaq/Vo) = 1 + (1/1.8)(1.00/0.90) = 1 + 0.62 = 1.62
x = m/1.62 = 0.618m
So, 61.8 % of the solute is extracted in each step.
In other words, 38.2 % of the solute remains.
Let r = the amount remaining after n extractions. Then
r = m(0.382)^n.
If n = 7,
r = 75(0.382)^7 = 75 × 0.001 18 = 0.088 mg
m = 75 - 0.088 = 75 mg
After seven extractions, 75 mg (99.999 %) of the solute will be extracted.