Here given that x is inversely depends of y
so as we increase the value of y so due to inverse dependency it will decrease the value of x
So here we can also say that when x inversely depends on y
so the product of x and y will remain constant here
so here the graph should be like this that if we increase the quantity on x axis then it will decrease the other quantity on y axis
<u><em>So here best appropriate graph must be option A</em></u>
Answer:
Q = 1057.5 [cal]
Explanation:
In order to solve this problem, we must use the following equation of thermal energy.

where:
Q = heat energy [cal]
Cp = specific heat = 0.47 [cal/g*°C]
T_final = final temperature = 32 [°C]
T_initial = initial temperature = 27 [°C]
m = mass of the substance = 450 [g]
Now replacing:
![Q=450*0.47*(32-27)\\Q=1057.5[cal]](https://tex.z-dn.net/?f=Q%3D450%2A0.47%2A%2832-27%29%5C%5CQ%3D1057.5%5Bcal%5D)
Answer:
The sum of all forces for the two objects with force of friction F and tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F
1) no sliding infers: a₁ = a₂= a
The two equations become:
m₂a = T - m₁a
Solving for a:
a = T / (m₁+m₂) = 2.1 m/s²
2) Using equation(i):
F = m₁a = 51.1 N
3) The maximum friction is given by:
F = μsm₁g
Using equation(i) to find a₁ = a₂ = a:
a₁ = μs*g
Using equation(ii)
T = m₁μsg + m₂μsg = (m₁ + m₂)μsg = 851.6 N
4) The kinetic friction is given by: F = μkm₁g
Using equation (i) and the kinetic friction:
a₁ = μkg = 6.1 m/s²
5) Using equation(ii) and the kinetic friction:
m₂a₂ = T - μkm₁g
a₂ = (T - μkm₁g)/m₂ = 12.1 m/s²
Answer:
Force
Explanation:
The mass of an object is the quantity of matter it contains. It is measured in kilograms.
Acceleration is the ratio of the change in the velocity of an object to the change in time. It is measured in m/
.
When the mass of an object is multiplied with its acceleration, this gives the average force applied on the object. As force is defined as agent that can change the state of an object.
i.e F = m × a
where F is the force, m is the mass of the object and a its acceleration.
The two major classes of force are; contact force and field force.