Answer
given,
mass = 100 kg
acceleration = 10 m/s²
A mass 20 kg slides over 100 kg block
acceleration = 3 m/s²
horizontal friction exerted by the 100 kg block on 20 kg
using newton's second law
F - f = 0
F = f
f = ma
f = 20 × 3
f = 60 N
now net force acting on the 100 kg block
F_net = m a
F_net = 100 x 10
F_net = 1000 N
after 20 kg block falls the acceleration of the bock
F = 1000 +60
F = 1060 N
acceleartion on the block


a = 10.60 m/s²
Explanation :
Displacement refers to the distance between the final and the initial position. Hence the displacement of the ball will be the difference between the initial and the final displacement.
Let the initial position be 0.
Final position = 8 cm
So the difference between initial position and final position = 0 – 8 = - 8 cm.
So the billiard ball comes to rest 8.0 cm behind its orbital position.
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km
Answer:
speed of light simulating traveling at the speed of light. Speed of light, speed at which light waves propagate through different materials. In particular, the value for the speed of light in a vacuum is now defined as exactly 299,792,458 metres per second
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium