In order to compute the torque required, we may apply Newton's second law for circular motion:
Torque = moment of inertia * angular acceleration
For this, we require the angular acceleration, α. We may calculate this using:
α = Δω/Δt
The time taken to achieve rotational speed may be calculated using:
time = 1 revolution * 2π radians per revolution / 3.5 radians per second
time = 1.80 seconds
α = (3.5 - 0) / 1.8
α = 1.94 rad/s²
The moment of inertia of a thin disc is given by:
I = MR²/2
I = (0.21*0.1525²)/2
I = 0.002
τ = 1.94 * 0.002
τ = 0.004
The torque is 0.004
Answer:
According to Newton's third law, for every action force there is an equal (in size) and opposite (in direction) reaction force. Together, these two forces exerted upon two different objects form the action-reaction force pair.
Explanation:
Sana makatulong ^_^
Answer:
the work done by the 30N force is 4156.92 J.
For this problem, they don´t ask you to determine the work of the total force applied in the block. They only want the work done for the force of 30N, with an angle of 30º respectively of the displacement and a traveled distance of 160m. So:
W=F·s·cos(α)=30N·160m·cos(30º)=4156.92J
The gravitation force with which the earth is being pulled can be determined by applying Newton's law of universal gravitation.
<h3>
What is gravitation force?</h3>
According Newton's law of universal gravitation, the force exerted between two objects in the universe is directly proportional to the product of masses of the two objects and inversely proportional to the square of the distance between the two objects.
Mathematically, the formula for gravitation force is given as;
F = GmM/R²
where;
- m is the mass of the object
- M is mass of earth
- R is the distance of the object from earth
- G is universal gravitation constant
If the mass of the object is know and the distance between earth and the object is also known, the force with which the earth is being pulled can be calculated by applying Newton's law of universal gravitation as shown in the above equation.
Thus, the force with which the earth is being pulled can calculated as well.
Learn more about gravitation force here: brainly.com/question/27943482
#SPJ1