Answer:
D. All of the above.
Explanation:
Iron has a constant density, which means 2-kg block will have twice as much volume as 1-kg block; therefore, choice A is correct.
Inertia is defined by the equation F = ma: it measures how hard it is to change the motion of an object. The inertia of the the 1-kg solid iron is
F = 1a,
And the inertia of the 2-kg solid iron is
F = 2a,
which is twice as much that of the 1-kg block; therefore, choice B is correct.
The mass of the 2-kg block is twice as much as that of the 1-kg block; therefore, choice C is also correct.
Thus, all of the choices are correct (D).
Rate of change of velocity is acceleration
Answer: 313920
Explanation:First, we’re going to assume that the top of the circular plate surface is 2 meters under the water. Next, we will set up the axis system so that the origin of the axis system is at the center of the plate.
Finally, we will again split up the plate into n horizontal strips each of width Δy and we’ll choose a point y∗ from each strip. Attached to this is a sketch of the set up.
The water’s surface is shown at the top of the sketch. Below the water’s surface is the circular plate and a standard xy-axis system is superimposed on the circle with the center of the circle at the origin of the axis system. It is shown that the distance from the water’s surface and the top of the plate is 6 meters and the distance from the water’s surface to the x-axis (and hence the center of the plate) is 8 meters.
The depth below the water surface of each strip is,
di = 8 − yi
and that in turn gives us the pressure on the strip,
Pi =ρgdi = 9810 (8−yi)
The area of each strip is,
Ai = 2√4− (yi) 2Δy
The hydrostatic force on each strip is,
Fi = Pi Ai=9810 (8−yi) (2) √4−(yi)² Δy
The total force on the plate is found on the attached image.
Atoms begin to gravitate together to form a center
Battery capacity (AH) is defined as a product of the current that is drawn from the battery while the battery is able to supply the load until its voltage is dropped to lower than a certain value for each cell.