Answer:
Q = A ⊕ B = (A AND B) + ( not(A) AND not(B) )
Explanation:
AND gates : only output 1 when both inputs are 1
OR gate: only output 1 when either or both of the inputs are 1
NOT gates: takes only one input ad output the opposite of the input
The required circuit should takes two inputs and outputs a 1 if and only if the two inputs are the same signal.
The two possible scenarios : both input are 1's or 0's
Q = A ⊕ B = (A AND B) + ( not(A) AND not(B) )
A B not(A) not(B) A AND B not(A) AND not(B) Q
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1
Answer - corona, chromosphere, photosphere
Answer:
The system prevents a consumer from accruing debt via electricity use, as it only allows the customer to use electricity which has been paid for upfront.
this gives the advantage of not allowing the consumer to rack up debt
the disadvantage for the consumer comes when they cannot afford to prepay in a time of financial difficulty - as the system now renders them as having no electricity as well as no money
Frequency and wavelength are two variables which are
indirectly proportional.
They are related in the following equation:
f = c / w
Where,
<span>f = frequency c =
speed of light w = wavelength</span>
Since c is constant, we can equate condition 1 and
condition 2:
f1 w1 = f2 w2
When w2 = 3 w1, then f2 becomes:
261.63 w1 = f2 (3 w1)
Cancelling w1:
f2 = 261.63 / 3
<span>f2 = 87.21 Hz</span>