The amount of heat in the body in joule
Answer:
True
Explanation:
i searched it up and well this thing is making me do it up till 20 characters long so yea
Given the following in the problem:
Distances : 2.0 m and 4.0 m
Sound waves : 1700 hz
Speed of sound : 340 m/s
Get the wavelength of the sound by using the formula:
Lambda = speed of sound/sound waves
Lambda = 340 m/s / 1700 hz
Lambda = 0.2
Get the path length difference to the point from the two speakers
L1 = 4mL2 = sqrt (42+ 22) m
Delta = 4.47
x = delta / lambda
If the outcome is nearly an integer, the waves strengthen at the point. If it is nearly an integer +0.5 the waves interfere destructively at the point. If it is neither the point is somewhat in in the middle.
Solving x = (4.47 – 4) / (0.2) = 2.35 an integer +0.5 so it’s a point of destructive interference.
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
The answer is C.
The Kinetic energy which was exerted and experience pulling the string of a bow is kept as a potential energy at the end of the arrow in contact with the string. Once release from aim at stationary position the potential energy is again transformed.