Answer:
12
Explanation:
the 4 by the element symbol O multiplied by the 3 on the outside of the parentheses
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

Answer:I think it could be A or B but I would choose A.
Explanation:
Covalent bonds can be classified as nonpolar and polar covalent given the electronegativity difference between two atoms (ΔEN).
Nonpolar covalent bond electrons are shared equally between two atoms, polar covalent bond electrons are shared unequally, atoms have partial charges, ionic bond electrons are completely transferred to one atom, full charges present. Therefore, the greater the electronegativity difference, the greater the bond polarity. Let's determine the types of bonds present in the compounds and arrange the ones with polar covalent in order of increasing ΔEN. Sulfur and oxygen are both nonmetals so the substance is covalent. Sulfur has EN = 2.5 and oxygen has EN = 3.5. Since there is an electronegativity difference, the S−O bonds in the substance can be classified as polar covalent bonds.
Learn more about polar covalent bond here:
brainly.com/question/25150590
#SPJ4