1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luda [366]
3 years ago
15

Can someone please help a struggling physics student?

Physics
1 answer:
zhenek [66]3 years ago
5 0
<h3><u>Part A:</u></h3>

<u><em>What is the maximum height the ball will reach in the air?</em></u>

Kinematics equation used:

  • v_f^2=v_i^2+2ad, where v_f is final velocity, v_i is initial velocity, a is acceleration, and d is distance travelled. From SI units, velocity should be in m/s, acceleration should be in m/s^2, and distance should be in m

We're given that the initial velocity is 12.0 m/s in the y-direction. At the maximum height, the vertical velocity of the ball will be 0 m/s, otherwise it would not be at maximum height. This is our final velocity.

The only acceleration in the system is acceleration due to gravity, which is approximately 9.8\:\mathrm{ m/s^2}. However, the acceleration is acting down, whereas the ball is moving up. To express its direction, acceleration should be plugged in as -9.8\:\mathrm{m/s^2}. We have three variables, and we are solving for the fourth, which is distance travelled. This will be the maximum height of the ball.

Substitute v_i=12, v_f=0, a=-9.8 to solve for d:

0^2=12^2+2(-9.8)(d),\\0=144-19.6d,\\-19.6d=-144,\\d=\frac{-144}{-19.6}=7.34693877551\approx \boxed{7.35\text{ m}}

<u><em>What is the velocity of the ball when it hits the ground?</em></u>

This question tests a physics concept rather than a physics formula. The vertical velocity of the ball when it hits the ground is equal in magnitude but opposite in direction to the ball's initial vertical velocity. This is because the ball spends equal time travelling to its max height as it does travelling from max height to the ground (ball is accelerating from initial velocity to 0 and then from 0 to some velocity over the same distance and time). Since the ball has an initial vertical velocity of +12.0 m/s, its velocity when it hits the ground will be \boxed{-12.0\text{ m/s}}. (The negative sign represents the direction. Because velocity is a vector, it is required.)

<h3><u>Part B:</u></h3>

<u>**Since my initial answer exceeds the character limit, I've attached the first question to Part B as an image. Please refer to the attached image for the answer and explanation to the first question of Part B. Apologies for the inconvenience.**</u>

<u><em>What is the direction of the velocity of the ball when it hits the ground? Express your answer in terms of the angle (in degrees ) of the ball's velocity with respect to the horizontal direction (see figure).</em></u>

This question uses a similar concept as the second question of Part A. The vertical velocity of the ball at launch is equal in magnitude but opposite in direction to the ball's final velocity. The horizontal component is equal in both magnitude and direction throughout the entire launch, since there are no horizontal forces acting on the system. Therefore, the angle below the horizontal of the ball's velocity when it hits the ground is equal to the angle of the ball to the horizontal at launch.

To find this, we need to use basic trigonometry for a right triangle. In any right triangle, the tangent/tan of an angle is equal to its opposite side divided by its adjacent side.

Let the angle to the horizontal at launch be \theta. The angle's opposite side is represented by the vertical velocity at launch (12.0 m/s) and the angle's adjacent side is represented by the horizontal velocity at launch (2.3 m/s). Therefore, we have the following equation:

\tan \theta=\frac{12.0\text{m/s}}{2.3\text{ m/s}}

Take the inverse tangent of both sides:

\arctan (\tan \theta)=\arctan (\frac{12.0}{2.3})

Simplify using \arctan(\tan \theta)=\theta \text{ for }\theta \in (-90^{\circ}, 90^{\circ}):

\theta=\arctan(\frac{12.3}{2.3}),\\\theta =79.14989537\approx \boxed{79.15^{\circ}}

We can express our answer by saying that the direction of the velocity of the ball when it hits the ground is \boxed{\text{approximately }79.15^{\circ} \text{ below the horizontal}} or \boxed{\text{approximately }-79.15^{\circ} \text{ to the horizontal}}.

You might be interested in
I really don’t know what it is to me they r all the same
Inessa05 [86]
The moon lacks an atmosphere compared to the Earth. Hope this helps!
4 0
3 years ago
Read 2 more answers
I will mark as the brainliest answer​
erastova [34]

Answer:

8) 1500 feet

9) 20 miles

10) 4 Days

11) 2250 miles

12) 1 hour and 5 minutes

13) 27.27miles per hour

Explanation

8) There are 60 seconds in one minute so 60x25=1500 feet

9) 30 minutes is half of an hour so 40 miles ÷ 2 = 20 miles

10) 12x4=48

11) 500 miles x 4.5 hours is 2250 miles

12) Train leaves at 3pm after 60 miles it will be 4 pm and after 5 more miles 4:05 pm so 1 hour and 5 minutes

13)

Elmo = 40 minutes and 5 miles

Bert and Ernie = 45 minutes and 15 miles

Cookie Monster = 20 minutes and 10 miles

Home = 5 minutes abd 20 miles

Average Speed including stops is 27.27 miles per hour

5 0
4 years ago
What is the momentum of a 546,540 kg train that is travelling at 7.8 m/s​
lara [203]

p=mv so wouldn't u multiply them?

8 0
3 years ago
A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9 degrees below th
zhannawk [14.2K]

Answer: V_{f}=2.96m/s    

Firstly we have to draw the Free Body Diagram (FBD) as shown in the figure attached.

Where the weight w of the block has an x-component and y-component:

w_{x}=wsin(\theta)    (1)

w_{y}=wcos(\theta)    (2)

As well as the Normal Force N:

N_{x}=Nsin(\theta)    (3)

N_{y}=Ncos(\theta)    (4)

In addition, we know N=w, then \sum F_{y}=0

In the X-component:

\sum F_{x}=m.a

m.a=w_{x}    (5)

Substituting (1) in (5):

wsin(\theta)=m.a    (6)

In addition, we know w=m.g, where m is the mass of the block and g the gravity acceleration, which is equal to 9.8m/{s}^{2}  

So:

m.g.sin(\theta)=m.a   (7)

a=g.sin(\theta)    (8)

a=5.88m/{s}^{2}    (9)   >>>>This is the acceleration of the block

On the other hand, we have the following equation that expresses a <u>relation between</u> the distance d with the acceleration a and time t:

d=\frac{1}{2}a{t}^{2}   (10)

We already know the value of  d and calculated a, we have to find t:

t=\sqrt{\frac{2d}{a}}   (11)

t=\sqrt{\frac{2(0.75m)}{5.88m/{s}^{2}}}   (12)

t=0.50s   (13) >>>This is the time it takes to the block to go from the initial velocity V_{o} to its final velocity V_{f}

If the acceleration is the variation of the velocity in time, we can use the following equation to find V_{f}:

V_{f}-V_{o}=a.t   (13)

If V_{o}=0

V_{f}=a.t   (14)

V_{f}=(5.88m/{s}^{2})(0.50s)   (15)

Finally we get the value of the Final Velocity of the block:

V_{f}=2.96m/s    

6 0
3 years ago
Help please
Anarel [89]

Answer:

1) D, 2) D, 3) B, 4) B, 5) C

Explanation:

You are asked to select the correct answer

1)  The conservation of energy is one of the most important principles of physics that allows solving countless problems in life.

the correct answer is D

2) when a body falls, the gravitational potential energy is transformed into kinetic energy and both are transformed into thermal energy

the correct answer is D

3) When the gravitational potential energy is maximum, the kinetic energy is minimum and when the kinetic energy is maximum, the gravitational energy is minimum.

Correct answer B

4) speed is defined by

         v = x / t

so the correct answer is B in the SI system

5) when we repeat a measurement several times, the random or statistical errors decrease, therefore the confidence of the measurement increases.

The correct answer is C

4 0
3 years ago
Other questions:
  • I need help with finding the rest of the missing things..like the current (I), resistance, and voltage (v)
    10·1 answer
  • What is the net force on a car if the force of friction is 15 N and the forward force due to the engine is 20 N?
    15·1 answer
  • A 1530 kg car moving south at 12.1 m/s collides with a 2560 kg car moving north. The cars stick together and move as a unit afte
    5·1 answer
  • A 50kg hiker is standing on the edge of a cliff. Find the hiker’s gravitational potential energy if the cliff is 30m high. (Show
    13·2 answers
  • The acceleration from gravity on the moon is 1.6 m/s. How much less force
    15·1 answer
  • Extreme tides are Please explain
    11·1 answer
  • A current of 0.2A flows through a component with a resistance of 40ohms calculate the potential difference
    5·1 answer
  • Need Help
    7·1 answer
  • There are many uses for permanent magnets and temporary magnets like an electromagnet. Electric appliances with electric motors
    13·1 answer
  • If a mass of 1 kg is accelerated to 1 m/s2 by a force of 1 N, then
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!