Answer:
27.1 m/s
Explanation:
Given that at a race car driving event, a staff member notices that the skid marks left by the race car are 9.06 m long. The very experienced staff member knows that the deceleration of a car when skidding is -40.52 m/s2.
Using third equation of motion,
V^2 = U^2 + 2aS
Since the car is decelerating, the final velocity V = 0
Substitute all the parameter into the equation above,
0 = U^2 - 2 * 40.52 * 9.06
U^2 = 734.22
U = 
U = 27.096
U = 27.1 m/s approximately
Therefore, the staff member can estimate for the original speed of the race car to be 27.1 m/s if it came to a stop during the skid
Answer: K.E = 0.4 J
Explanation:
Given that:
M = 1.0 kg
h = 0.04 m
K.E = ?
According to conservative of energy
K.E = P.E
K.E = mgh
K.E = 1 × 9.81 × 0.04
K.E = 0.3924 Joule
The kinetic energy of the pendulum at the lowest point is 0.39 Joule
Answer:

Explanation:
mass of the bicycle + cyclist = 50 kg
constant speed = 6 km/h
a cyclist coasting down a 5.0° incline
the downward velocity is constant, so net acceleration must be zero
the air drag must be equal to gravitational force downward along the ramp
now for upward motion





Answer:
the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Explanation:
The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

15 - (1/200) L = 5 + (1/200) L
15 - 5 = (1/200) L + (1/200) L
10 = (2/200) L
(10*200)/2 = L
1000 = L
Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:
W = 15 - (1/200) L
W = 15 - (1/200) 1000
W = 10
Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers