Chlorine gas reacts to potassium bromide to form potassium chloride in solution and liquid bromine.
I hope this helps/answers your question! I vaguely remember getting this question before too
A general exponential expression is something like:
A^n
This means that we need to multiply the number A by itself n times.
Using that we will get (-2)^6 = 64
With that definition, we can rewrite:
(-2)^6 = (-2)*(-2)*(-2)*(-2)*(-2)*(-2)
So we just need to solve the above expression.
Also, remember the rule of signs:
(-)*(-) = (+)
We will get:
(-2)*(-2)*(-2)*(-2)*(-2)*(-2) = [(-2)*(-2)]*[(-2)*(-2)]*[(-2)*(-2)]
= 4*4*4 = 16*4 = 64
Then we got:
(-2)^6 = 64
If you want to learn more, you can read:
brainly.com/question/17172630
The new volume at standard temperature and pressure is 5.08 L.
Explanation:
As per the kinetic theory of gases, the volume occupied by gas molecules will be inversely proportional to the pressure of the gas molecules. This is termed as Boyle's law.
So, pressure∝
Thus, if two pressure and two volumes are given then,

Now, we known the values of P₁ = 8 atm, V₁ = 635 mL, P₂ = 1 atm and V₂ we have to determine. We are considering P₂ = 1 atm, because we have to determine V₂ at standard temperature and pressure. And standard pressure is 1 atm.

Thus, the new volume at standard temperature and pressure is 5.08 L.
The freezing point depression of the solution or pure substance that is added with the solvent is calculated through the equation,
ΔTf = Kfm
where ΔT is the freezing point depression, Kf is the constant for water given to be -1.86°C/m and m is the molality of the solution.
Molality is calculated through the equation,
m = number of moles solute/ kg of solvent
Calculation of molality is shown below.
m = (21.5 g C6H12O6)(1 mol/180 g) / (0.255 kg)
m = 0.468 molal
The freezing point depression is then,
ΔTf = (-1.86°C/m)(0.468 m) = -0.87°C
<em>Answer: -0.87°C</em>
Answer:
has aldehyde functional group.
Explanation:
Functional groups are specific group of atoms within molecules that are responsible for the characteristic chemical reactions of those molecules.
A.
has ketone
functional group .
B.
has carboxylic acid
functional group .
C.
has aldehyde
functional group .
D.
has ester
functional group .
Thus
has aldehyde (CHO) group.