The volume of a gas that its pressure increase to 3.4 atm is calculated as follows
By use of boyles law that is P1V1=P2V2
V1=4.0 L
P1=1.1 atm
P2=3.4 atm
V2= P1V1/P2
(1.1 atm x 4.0 L)/3.4 atm= 1.29 L
physical change in a substance doesn't change what the substance is. In a chemical change where there is a chemical reaction, a new substance is formed and energy is either given off or absorbed. For example, if a piece of paper is cut up into small pieces it still is paper.
Answer:
The difference in mass between 3.01×10^24 atoms of gold and a gold bar with the dimensions 6.00 cm X 4.25 cm X 2.00 cm is :
<u>Difference</u> <u>in mass</u> =<u> 985.32 - 984.5 = 0.82 g</u>
Explanation:
<u>Part I :</u>

n = 4.9983
n = 4.99 moles
(Note : You can also take n = 5 mole )
Molar mass of gold = 196.96 g/mole
This means, 1 mole of gold(Au) contain = 196.96 grams
So, 4.99 moles of gold contain =
g
4.99 moles of gold contain = 984.8 g
Mass of
atoms of gold = 984.5 g
<u>Part II :</u>
Density of Gold = 
Volume of the cuboid = 
Volume of the gold bar =
Volume of the gold bar = 51
Using formula,

Mass = 985.32 g
So, A gold bar with the dimensions 6.00 cm X 4.25 cm X 2.00 cm has mass of <u>985.32 g</u>
<u>Difference</u> <u>in mass</u> =<u> 985.32 - 984.5 = 0.82 g</u>
<h2>The required "option is b) hydrogen bonds must be broken to raise its temperature.</h2>
Explanation:
- Water has high specific heat due to hydrogen bonds present in it.
- The Ionisation of water does not affect the specific heat of the water.
- On decreasing the temperature, there is the formation of bonds hence option (d) is wrong.
- On increasing the temperature, there is the breaking of bonds hence option (b) is correct.
1. Energy as particles can't move without kinetic (movement) energy
2. I think it's Diffusion and Active Transport