Because of gravity not pulling you down
The answers is 54 because 27 protons times theses nuts = 54
Answer:
ΔHr = -86.73 kJ/mol
Explanation:
Using Hess's law, you can calculate ΔH of any reaction using ΔH°f of products and reactants involed in the reaction.
<em>Hess law: ∑nΔH°f products - ∑nΔH°f reactants = ΔHr</em>
<em>-Where n are moles of reaction-</em>
For the reaction:
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)
Hess law is:
ΔHr = ΔH°f Fe(OH)₃ - ΔH°f Fe³⁺ - 3×ΔH°f OH⁻
Where:
ΔH°f Fe(OH)₃: −824.25 kJ/mol
ΔH°f Fe³⁺: −47.7 kJ/mol
ΔH°f OH⁻: −229.94 kJ/mol
Replacing:
ΔHr = −824.25 kJ/mol - (−47.7 kJ/mol) - (3×-229.94 kJ/mol)
<em>ΔHr = -86.73 kJ/mol</em>
Answer:
Option D is correct = 58 g
Explanation:
Data Given:
mass of LiOH = 120 g
Mass of Li3N= ?
Solution:
To solve this problem we have to look at the reaction
Reaction:
Li₃N (s) + 3H₂0 (l) -----------► NH₃ (g) + 3LiOH (l)
1 mol 3 mol
Convert moles to mass
Molar mass of LiOH = 24 g/mol
Molar mass of Li₃N = 35 g/mol
So,
Li₃N (s) + 3H₂0 (l) -----------► NH₃ (g) + 3LiOH (l)
1 mol (35 g/mol) 3 mol (24 g/mol)
35 g 72 g
So if we look at the reaction 35 g of Li₃N react with water and produces 72 g of LiOH , then how many g of Li₃N will be react to Produce by 120 g of LiOH
For this apply unity formula
35 g of Li₃N ≅ 72 g of LiOH
X of Li₃N ≅ 120 g of LiOH
By Doing cross multiplication
Mass of Li₃N = 35 g x 120 g / 72 g
mass of Li₃N = 58 g
120 g of LiOH will produce from 58 g of Li₃N
So,
Option D is correct = 58 g
H2O
This equation is a double displacement reaction, and it forms H2CO3, which is very unstable and separates into H2O and CO2.