Answer:
1.33
Explanation:
speed of light in vacuum, c = 3 x 10^8 m/s
speed of light in medium, v = 2.26 x 10^8 m/s
The refractive index of the medium is given by
μ = speed of light in vacuum / speed of light in medium
μ = (3 x 10^8) / (2.26 x 10^8)
μ = 1.33
By ideal gas theory, cylinder b has the higher temperature.
We need to know about the ideal gas theory to solve this problem. The ideal gas can be represented by
P . V = n . R . T
where P is the pressure, V is volume, n is the number of molecules, R is the ideal gas constant and T is temperature.
From the question above, we know that
Pa = Pb = P
na = 3nb
Find the temperature of the cylinder a
P . V = n . R . Ta
Ta = P . V /( na . R )
Substitute na
Ta = P . V /( (3nb) . R )
Ta = (1/3) x (P . V /( (nb . R ))
Find the temperature of the cylinder b
P . V = n . R . Tb
Tb = P . V /( nb . R )
The cylinder a temperature is 3 times smaller than the temperature in cylinder b.
Find more on ideal gas at: brainly.com/question/25290815
#SPJ4
Answer:
Explanation:
Given
two holes are made with different sizes
Hole 1 is large in size and hole 2 is small
If the volume flow rate of water is same for both the hole then small hole must be below the large hole because for same flow rate, velocity of water is large while cross-sectional area is small so it compensate to give same flow for both the holes.
Now for radius apply Bernoulli's theorem at hole 1 and 2


if hole 1 is h distance below water surface then 
and 
Also 

and 

thus 


Answer: Chlorophyll Breaking down.
Explanation: When it starts to get cooler the chlorophyll breaks down causing the pretty green color to change to brown gold and orange.