Answer:

Given:
Temperature, T = 3.13 K
molar mass of molecular hydrogen, m = 2.02 g/mol = 
Solution:
To calculate the root mean squarer or rms speed of hydrogen molecule, we use the given formula:

where
R = rydberg's constant = 8.314 J/mol-K
Putting the values in the above formula:


Answer:
The speed of the wave with a frequency 100 mhz will be 
Explanation:
We have given that frequency of light is 100 mhz
We have to find the speed of light in vaccuum
We know that all electromagnetic waves travels in vaccum wth the same speed as the speed of light
And we know that speed of light is equal to 
So the speed of the wave with a frequency 100 mhz will be 
Answer:
d = 2021.6 km
Explanation:
We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them
Airplane 1
Height y₁ = 800m
Angle θ = 25°
cos 25 = x / r
sin 25 = z / r
x₁ = r cos 20
z₁ = r sin 25
x₁ = 18 103 cos 25 = 16,314 103 m
= 16314 m
z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m
2 plane
Height y₂ = 1100 m
Angle θ = 20°
x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m
z₂ = 20 103 without 25 = 8.452 103 m = 8452 m
The distance between the planes using the Pythagorean Theorem is
d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2
Let's calculate
d² = (18126-16314)² + (1100-800)² + (8452-7607)²
d² = 3,283 106 +9 104 + 7,140 105
d² = (328.3 + 9 + 71.40) 10⁴
d = √(408.7 10⁴)
d = 20,216 10² m
d = 2021.6 km
The speed of light is......299 792 458 m / s
By the law of momentum conservation:-
=>m¹u¹ + m²u² = m1v1 + m²v² {let East is +ve}
=>u¹ + u² = v¹ + v² {as m1=m2}
=>3.5 - 2.75 = v1-1.5
<span>
=>v¹ = 2.25 m/s (East) </span>