Answer:
a) 0.3
b) 3.6 mm
Explanation:
Given
Length of the pads, l = 200 mm = 0.2 m
Width of the pads, b = 150 mm = 0.15 m
Thickness of the pads, t = 12 mm = 0.012 m
Force on the rubber, P = 15 kN
Shear modulus on the rubber, G = 830 GPa
The average shear strain can be gotten by
τ(average) = (P/2) / bl
τ(average) = (15/2) / (0.15 * 0.2)
τ(average) = 7.5 / 0.03
τ(average) = 250 kPa
γ(average) = τ(average) / G
γ(average) = 250 kPa / 830 kPa
γ(average) = 0.3
horizontal displacement,
δ = γ(average) * t
δ = 0.3 * 12
δ = 3.6 mm
Answer:
A pet
Explanation:
Latin time I checked animals aren't made by people? I honestly don't know if this helps but I'm technically not wrong.
Answer:
b). Occurs at the outer surface of the shaft
Explanation:
We know from shear stress and torque relationship, we know that

where, T = torque
J = polar moment of inertia of shaft
τ = torsional shear stress
r = raduis of the shaft
Therefore from the above relation we see that

Thus torsional shear stress, τ is directly proportional to the radius,r of the shaft.
When r= 0, then τ = 0
and when r = R , τ is maximum
Thus, torsional shear stress is maximum at the outer surface of the shaft.
Answer=
low-frequency EMFs pose little danger to human health. ... Exposure to large levels of high-frequency EMFs is known to damage human DNA and cells
Explanation: