1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lilavasa [31]
3 years ago
14

Two steel plates are to be held together by means of 16-mm-diameter high-strength steel bolts fitting snugly inside cylindrical

brass spacers. Knowing that the average normal stress must not exceed 210 MPa in the bolts and 145 MPa in the spacers, determine the outer diameter of the spacers that yields the most economical and safe design.
Engineering
1 answer:
dusya [7]3 years ago
5 0

Answer:

The outer diameter of the spacers that yields the most economical and safe design is 25.03 mm

Explanation:

For steel bolt

Stress = 210 MPa or 210 N/mm2

Pressure = Stress* Area

Pbolt = 210 N/mm2 * 16^2 *(pi)/4

Pbolt = 210 N/mm2 * 200.96 mm^2 = 42201.6  N

For Brass spacer

Pressure = 42201.6  N

Area of Brass spacer = Pressure/Stress

Area of Brass spacer = 42201.6  N/145 N/mm^2 = 291.044 mm^2

Area of Brass spacer = (pi) (d^2 - 16^2)/4 =  291.044 mm^2

d^2 - 16^2 = 291.044 mm^2* 4/(pi) = 370.758

d^2 =  370.758 + 16^2

d^2 =   626.758

d = 25.03 mm

The outer diameter of the spacers that yields the most economical and safe design is 25.03 mm

You might be interested in
A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures. This cylinder has a 90mm OD, a 1.65
Andru [333]

Given:

Outer Diameter, OD = 90 mm

thickness, t = 0.1656 mm

Poisson's ratio, \mu = 0.334

Strength = 320 MPa

Pressure, P =3.5 MPa

Formula Used:

1).  Axial Stress_{max} = P[\frac{r_{o}^{2} + r_{i}^{2}}{r_{o}^{2} - r_{i}^{2}}]

2). factor of safety, m = \frac{strength}{stress_{max}}

Explanation:

Now, for Inner Diameter of cylinder, ID = OD - 2t

ID = 90 - 2(1.65) = 86.7 mm

Outer radius,  r_{o} = 45mm

Inner radius,  r_{i} = 43.35 mm

Now by using the given formula (1)

  Axial Stress_{max} = 3.5[\frac{45^{2} + 43.35^{2}}{45^{2} - 43.35^{2}}]

  Axial Stress_{max} = 3.5\times 26.78 =93.74 MPa

Now, Using formula (2)

factor of safety, m = \frac{320}{93.74} = 3.414

7 0
3 years ago
Please help ASAP!!
masha68 [24]

Answer:

C

Explanation:

8 0
3 years ago
Read 2 more answers
A civil engineer is asked to design a curved section of roadway that meets the following conditions: With ice on the road, when
lianna [129]

Answer:

1. 3.4^{o}

2. 163.3 m

Explanation:

Static friction between road and rubber, μs =0.06

The maximum speed of the car, v = 50 km/h

                                              = (50)(1000/3600) m/s

                                               = 13.89 m/s

The acceleration due to gravity, g = 9.81 m/s^{2}

The frictional force, f = μsN     ...... (1)

The component mg cosθ which balance the normal reaction N

The component mg sinθ acts in an opposite direction to the frictional force f.

        ΣF = mg sinθ-f = 0      ...... (2)

Substitute the equation (1) in equation (2), we get

 ΣF = mgsinθ-μsN = 0

 mgsinθ-μsmgcosθ =0

 μs = sinθ/cosθ

   tanθ = μs

    θ = tan-1( μs) = tan-1(0.06) = 3.4^{o}

(b)The vertical component of the force is

N cosθ = fsinθ+mg

 N cosθ = μsNsinθ+mg

N[cosθ- μs sinθ] = mg     ...... (3)

The horizontal component of the force along the motion of the car is

Nsinθ+fcosθ = ma  (Centripetal acceleration, a = \frac {v^{2}}{r}

  Nsinθ+fcosθ = m(\frac {v^{2}}{r})

   Nsinθ+μsNcosθ = m(\frac {v^{2}}{r})

N[sinθ+μs cosθ] = m(\frac {v^{2}}{r})     ...... (4)    

Dividing the equation (4) with equation (3),

 [sinθ+μscosθ]/[cosθ- μs sinθ] = \frac {v^{2}}{rg}

 cosθ[sinθ/cosθ+μs]/cosθ[1- μs sinθ/cosθ] =\frac {v^{2}}{rg}

[tanθ+μs]/[1-μs tanθ] = \frac {v^{2}}{rg}      

 From part (1), tanθ = μs

 Then the above equation becomes

 \frac {(\mu_s+\mu_s]}{[1-\mu_s^{2}]} =\frac {v^{2}}{rg}

\frac {(2\mu_s]}{[1-\mu_s^{2}]} =\frac {v^{2}}{rg}

Therefore, the minimum radius of the curvature of the curve is

               r = \frac {v^{2}}{{2 \mu_s/[1-\mu_s^{2}]}g} 

                   = \frac {v^{2}[1-\mu_s^{2}]}{2\mu_s g}

                   = \frac {(13.89 m/s)^{2}[1-(0.06)^{2}]}{(2)(0.06)(9.81)}

                 = 163.3 m

5 0
3 years ago
In fully developed laminar flow in a circular pipe the velocity at R/2 (mid-way between the wall surface and the centerline) is
Butoxors [25]

Answer:

u_{max} = 17.334\,\frac{m}{s}

Explanation:

Let consider that velocity profile inside the circular pipe is:

u(r) = 2\cdot U_{avg} \cdot \left(1 - \frac{r^{2}}{R^{2}}  \right)

The average speed at r = \frac{1}{2} \cdot R is:

U_{avg} = \frac{13\,\frac{m}{s} }{2\cdot \left(1-\frac{1}{4}  \right)}

U_{avg} = 8.667\,\frac{m}{s}

The velocity at the center of the pipe is:

u_{max} = 2\cdot U_{avg}

u_{max} = 17.334\,\frac{m}{s}

6 0
3 years ago
Read 2 more answers
Please answer fast. With full step by step solution.​
lina2011 [118]

Let <em>f(z)</em> = (4<em>z </em>² + 2<em>z</em>) / (2<em>z </em>² - 3<em>z</em> + 1).

First, carry out the division:

<em>f(z)</em> = 2 + (8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1)

Observe that

2<em>z </em>² - 3<em>z</em> + 1 = (2<em>z</em> - 1) (<em>z</em> - 1)

so you can separate the rational part of <em>f(z)</em> into partial fractions. We have

(8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1) = <em>a</em> / (2<em>z</em> - 1) + <em>b</em> / (<em>z</em> - 1)

8<em>z</em> - 2 = <em>a</em> (<em>z</em> - 1) + <em>b</em> (2<em>z</em> - 1)

8<em>z</em> - 2 = (<em>a</em> + 2<em>b</em>) <em>z</em> - (<em>a</em> + <em>b</em>)

so that <em>a</em> + 2<em>b</em> = 8 and <em>a</em> + <em>b</em> = 2, yielding <em>a</em> = -4 and <em>b</em> = 6.

So we have

<em>f(z)</em> = 2 - 4 / (2<em>z</em> - 1) + 6 / (<em>z</em> - 1)

or

<em>f(z)</em> = 2 - (2/<em>z</em>) (1 / (1 - 1/(2<em>z</em>))) + (6/<em>z</em>) (1 / (1 - 1/<em>z</em>))

Recall that for |<em>z</em>| < 1, we have

\displaystyle\frac1{1-z}=\sum_{n=0}^\infty z^n

Replace <em>z</em> with 1/<em>z</em> to get

\displaystyle\frac1{1-\frac1z}=\sum_{n=0}^\infty z^{-n}

so that by substitution, we can write

\displaystyle f(z) = 2 - \frac2z \sum_{n=0}^\infty (2z)^{-n} + \frac6z \sum_{n=0}^\infty z^{-n}

Now condense <em>f(z)</em> into one series:

\displaystyle f(z) = 2 - \sum_{n=0}^\infty 2^{-n+1} z^{-(n+1)} + 6 \sum_{n=0}^\infty z^{-n-1}

\displaystyle f(z) = 2 - \sum_{n=0}^\infty \left(6+2^{-n+1}\right) z^{-(n+1)}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{-(n-1)+1}\right) z^{-n}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{2-n}\right) z^{-n}

So, the inverse <em>Z</em> transform of <em>f(z)</em> is \boxed{6+2^{2-n}}.

4 0
3 years ago
Other questions:
  • Consider the following program:
    15·1 answer
  • The flatbed truck carries a large section of circular pipe secured only by the two fixed blocks A and B of height h. The truck i
    14·2 answers
  • When choosing a respirator for your job, you must conduct a _____ test.
    15·1 answer
  • For ceramic-matrix composites, high interfacial strength is desirable. ( True , False )
    8·1 answer
  • During an experiment conducted in a room at 25°C, a laboratory assistant measures that a refrigerator that draws 2 kW of power h
    13·1 answer
  • Depreciation is.... *
    7·2 answers
  • Often an attacker crafts e-mail attacks containing malware designed to take advantage of the curiosity or even greed of the reci
    14·1 answer
  • • Differentiate between laboratory and industrial reactors​
    11·1 answer
  • Steven is starting a project that requires a specialized, experienced contractor. Which selection process is the most suitable f
    11·1 answer
  • Tech A says that some relays are equipped with a suppression diode in parallel with the winding. Tech B says that some relays ar
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!