Answer:
230.4W
Explanation:
Heat transfer by conduction consists of the transport of energy in the form of heat through solids, in this case a jacket.
the equation is as follows

Where
Q=heat
k=conductivity=0.04
A=Area=1.8m^2
T2=33C
T1=1C
L=thickness=1cm=0.01m
Q=230.4W
the skier loses heat at the rate of 230.4W
The question is asking whether that statement is true or false. Options are;
A) True
B) False
This is about usage of Swing arm restraints.
<em><u>B) False</u></em>
There are different safety features that people employ when a vehicle is lifted. However, for this question, we will only talk about swing arm restraints.
- Swing arm restraints are lifting restraint devices that are used to prevent a cars arms from shifting or going out of position after that car has been lifted and mounted.
- This swing arm restraint does not prevent a vehicle from falling off a lift as it just helps to ensure that the swing arms that are unloaded basically maintain their position.
Read more at; brainly.com/question/17972874
Broken yellow b/c you can’t pass on a double solid yellow
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft