Answer:
ye computer ka sawal he .
Answer:
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Some mass is turned into energy, according to E=mc2.
<em><u>Explanation:</u></em>
E=mc2 is probably the most famous equation. E is the energy, m is mass, and c is the constant speed of light. Einstein came up with it to show that energy and mass are proportional - one can turn into the other, and back again.
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Answer:
Explanation:
Molal freezing point depression constant of butanol Kf = 8.37⁰C /m
ΔTf = Kf x m , m is no of moles of solute per kg of solvent .
mol weight of butanol = 70 g
235.1 g of butanol = 235.1 / 70 = 3.3585 moles
3.3585 moles of butanol dissolved in 4.14 kg of water .
ΔTf = 8.37 x 3.3585 / 4.14
= 6.79⁰C
Depression in freezing point = 6.79
freezing point of solution = - 6.79⁰C .
Energy is released when a chemical bond forms