Heating the reaction flask on a hot plate is an example of supplying activation energy to begin a reaction.
Explanation:
<u>Definition:</u>
Activation energy is defined as the minimum amount of energy required to start a particular chemical reaction.
For example: When hydrogen and oxygen are mixed together it does not immediately start the reaction to form water. So, to start the reaction a small electric spark is provided or it is heated to provide some energy. This energy causes the molecules of hydrogen and water to react, thus producing even more molecules to react and finally water is formed.
Here the electric spark or the heat provided is the activation energy.
It’s option D cause we know that S orbital is spherical
Ethane consists of 6C−H bonds and 1C−C bond. Total number of bonds is 7. Each bond is made up of two electrons
<h2>
<em>#</em><em>L</em><em>E</em><em>T</em><em>S</em><em> </em><em>STUDY</em></h2>
<em>#</em><em>B</em><em>R</em><em>A</em><em>I</em><em>N</em><em>L</em><em>E</em><em>S</em><em>T</em><em> </em><em>LOVE❣️</em>
I The answer is 42 cubic cm
Answer:
81.26% is the percent yield
Explanation:
Based on the reaction:
CaCl₂ + Na₂CO₃ → 2NaCl + CaCO₃
<em>Where 1 mole of CaCl₂ in excess of sodium carbonate produces 1 mole of calcium carbonate.</em>
<em />
To solve this question we must find the moles of CaCl2 added = Moles CaCO₃ produced (Theoretical yield). The percent yield is:
Actual yield (0.366g) / Theoretical yield * 100
<em>Moles CaCl₂ = Moles CaCO₃:</em>
0.0500L * (0.0900moles / L) = 0.00450 moles of CaCO₃
<em>Theoretical mass -Molar mass CaCO₃ = 100.09g/mol-:</em>
0.00450 moles of CaCO₃ * (100.09g / mol) = 0.450g of CaCO₃
Percent yield = 0.366g / 0.450g * 100
81.26% is the percent yield