Answer:
53.895 m.
Explanation:
Using the equation of motion,
v² = u² + 2as .............. Equation 1
Where v = final velocity of the swan, u = initial velocity of the swan, a = acceleration of the swan, s = distance covered by the swan.
make s the subject of the equation,
s = (v² - u²)/2a----------- Equation 2
Given: v = 6.4 m/s, u = 0 m/s ( from rest) a = 0.380 m/s².
Substitute into equation 2
s = (6.4²-0²)/(2×0.380)
s = 40.96/0.76
s = 53.895 m.
Hence the swan will travel 53.895 m before becoming airborne.
Answer: The law of conservation of energy is a physical law that states energy cannot be created or destroyed but may be changed from one form to another. Another way of stating this law of chemistry is to say the total energy of an isolated system.
Explanation:
Now I can actually edit my answer directly: I'm fairly sure I've got this wrong, and my mind has gone blank for how to do it, if someone could delete this that would be great and I'll think about it and see if I can figure it out!
Answer:
the number of photons of yellow light does the lamp generate in 1.0 s is 7 x 
Explanation:
given information:
power, P = 25 W
wavelength. λ - 580 nm = 5.80 x
m
time, t = 1 s
to calculate the number of photon(N), we use the following equation
N = λPt/hc
where
λ = wavelength (m)
P = power (W)
t = time interval (s)
h = Planck's constant (6.23 x
Js)
c = light's velocity (3 x
)
So,
N = λPt/hc
= (5.80 x
)(25)(1)/(6.23 x
)(3 x
)
= 7 x 