To find the horse power per second. Divide 15000 by 20( 15000÷20 ). The answer is 750.
Answer:
The answer is choice A and choice D
Explanation:
The answer below is just a joke, don't listen to them.
:)
I believe it was Copernicus' heliocentric model.
heliocentric - the sun is at the center and the planets revolve around it.
hope this helps :)
Answer:
Explanation:
Let the intensity of the noise be represented by I
Given that
40dB = 10 log 10 ( I /I•) ........ 1
I• is the lowest or threshold intensity of sound made.
I represents the intensity of the sound/ noise
The intensity of noise of 1000flies will be
β = 10 log 10 (1000I/I•)
Open up the bracket
β = 10 log 10(1000)+ 10 log 10(I/I•)
10 log 10(10^3)+10 log 10(I/I•)
3×10(10 log 10) +10 log 10(I/I•)
Recall, 10 log 10 = 1
30×1 + 10 log 10(I/I•).........2
Put equation 1 into 2
β =30+40
= 70db
Answer:
Second drop: 1.04 m
First drop: 1.66 m
Explanation:
Assuming the droplets are not affected by aerodynamic drag.
They are in free fall, affected only by gravity.
I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.
We can use the equation for position under constant acceleration.
X(t) = x0 + v0 * t + 1/2 * a *t^2
x0 = 0
a = 9.81 m/s^2
v0 = 0
Then:
X(t) = 4.9 * t^2
The drop will hit the floor when X(t) = 1.9
1.9 = 4.9 * t^2
t^2 = 1.9 / 4.9

That is the moment when the 4th drop begins falling.
Assuming they fall at constant interval,
Δt = 0.62 / 3 = 0.2 s (approximately)
The second drop will be at:
X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m
And the third at:
X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m
The positions are:
1.9 - 0.86 = 1.04 m
1.9 - 0.24 = 1.66 m
above the floor